Multidisciplinary Design Analysis and Optimisation of Rear Wings for Sports Cars Miguel da Silva Ferreira Thesis to obtain the Master of Science Degree in Aerospace Engineering Supervisor: Prof. André Calado Marta Examination Committee Chairperson: Prof. Filipe Szolnoky Ramos Pinto Cunha Supervisor: Prof. André Calado Marta Member of the Committee: Prof. Miguel António Lopes de Matos Neves June 2016 ii Acknowledgments I would like to thank Prof. Andre´ Marta for his knowledge and guidance throughout the elaboration of thisdissertation. I would also like to thank Prof. Miguel Matos Neves, for his support and in introducing me to the CAD/FEM team of the Instituto de Plasmas e Fusa˜o Nuclear (IPFN). A special thank you to the IPFN, in allowing me to use an ANSYS(cid:13)R License to achieve the proposed objectives of this dissertation. In particular, to Prof. Hugo Policarpo for special motivation, guidance, and provide all the means at its disposal to help me with the varied ANSYS(cid:13)R related obstacles faced. Also to Paulo Quental, IPFN researcher,forhisdisposalinalwayshelpingmewiththeseveralchallengesfaced. This project was a culmination of the last six years of completing my degree which would not be possiblewithoutmyfriends,andthefriendsmadeinthistime. Averyspecialthankyouto´IuriFigueiredo, forthecompanionandsupportinthelastmonthsofthecourseofthisdissertation. ToMariaPissarra,foralltheaffectionandsupportinthehardesttimes. Tomyfamily,Iamdeeplygratefulforthecontinuedknowledgeandsupportinallmyendeavors. Finally, I would like the express my deep love to my Godfather, Anibal da Silva, one of the most incredibleandwonderfulpersonsIhaveevermet. Thisdissertationisdedicatedtohim. iii iv Resumo A presente dissertac¸a˜o apresenta uma optimizac¸a˜o aero-structural de designs de asas traseiras in- vertidas para minimizar a resisteˆncia aerodinaˆmica e a massa estrutural. Dado que estes dispositivos teˆm uma elevada influeˆncia na performance de ve´ıculos, de modo a obter designs o´ptimos efica´zes e seguros,amultif´ısicaenvolvidafoiasseguradaatrave´sdainteracc¸a˜ofluido-estrutura. Oprincipalobjectivofoidesenvolveraimplementac¸a˜odeumametodologiaparaodesigndedispos- itivosaerodinaˆmicosautomo´veiso´ptimos. Pararesolveroproblemadeoptimizac¸a˜oaero-estrutural,foi aplicadaumaplataformadeprojecto,ana´liseeoptimizac¸a˜omultidisciplinar. Doiscasosdeestudoforam considerados: umaestrate´giadedesign convencionalutilizadaemaplicac¸o˜esautomo´veisgeraisede- sportivas; e um design proposto, onde a superf´ıcie de conexa˜o entre as placas laterais e os suportes verticaise´ utilizadaparagerarsustentac¸a˜onegativaadicional. Para assegurar a sinergia multidisciplinar e obter soluc¸o˜es fidedignas, um software de engenharia assistidaporcomputadorfoiutilizado(ANSYS(cid:13)R Workbench14.5). O projecto foi dividido em treˆs partes: as configurac¸o˜es dos diferentes modelos nume´ricos, os es- tudos parame´tricos aerodinaˆmicos e estruturais (focados nos efeitos das varia´veis de projecto) e as optimizac¸o˜esaerodinaˆmicaseestruturais(focadasnasvaria´veisdemaiorimpacto)paraobterdesigns o´ptimos. Apartirdosestudosrealizadosnestadissertac¸a˜o,umaplataformadedesign ana´liseeoptimizac¸a˜o multidisciplinar foi desenvolvida para o design preliminar de asas traseiras invertidas, o qual pode ser tambe´m aplicado a quaisquer outros dispositivos aerodinaˆmicos automo´veis. Gerac¸a˜o da malha e a modelac¸a˜o da turbuleˆncia sa˜o aspectos importantes no que respeita a qualidade e precisa˜o das soluc¸o˜es nume´ricas e para problemas com deformac¸o˜es pequenas, usando uma estrate´gia one-way deinteracc¸a˜ofluido-estruturatemvantagescomputacionaissignificativas. Palavras-chave: Problemaaero-estrutural,Interacc¸a˜ofluido-estrutura,Engenhariaassistida porcomputador,Dispositivosaerodinaˆmicos,Materiaiscompo´sitos. v vi Abstract This thesis covers aero-structural optimisation of rear wing designs to minimise aerodynamic drag and structuralmass. Thesestructureshighlyinfluencetheperformanceofvehicles, andinordertoachieve effectiveandsafeoptimaldesigns,themultiphysicsinvolvedwasconsideredbymeansoffluid-structure interaction(FSI). The objective was to fold the implementation of a process for optimal automotive aerodynamic de- vices design. To solve the aero-structural optimisation problem, a multidisciplinary design analysis and optimisation(MDAO)frameworkwasapplied. Twostudycaseswereconsidered: atraditionalrearwing design strategy used in automotive and motorsport applications; and a proposed design, where the surfaceconnectionbetweentheendplatesandverticalsupportsisusedtocreateadditionaldownforce. Concerningthemultidisciplinarysynergytoobtainfeasiblesolutions,aComputerAidedEngineering (CAE)softwarewasused(ANSYS(cid:13)R Workbench14.5). Theprojectwasdividedintothreeparts: thenumericalmodelssettings,theaerodynamicandstruc- turalparametricstudies(focusedontheeffectsofthedesignvariables),andaerodynamicandstructural optimisationproblems(focusedonthemostimpactingvariables)toobtainoptimaldesigns. From the studies performed in this thesis, a MDAO process for optimal preliminary design was de- veloped for rear wings, but it can also be applied to any other automotive aerodynamic devices. Mesh andturbulencemodellingstrategyprovedtobeveryimportantregardingtheaccuracyofthenumerical solutions and for problems with small deformations, a one-way FSI coupling technique has significant computationaladvantages. Keywords: Aero-structural problem, Fluid-structure interaction, Computer-aided engineering, Aerodynamicdevices,Compositematerials. vii viii Contents Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi ListofTables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii ListofFigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 RearWingOptimalDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 DesignConsiderations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 MultidisciplinaryDesignAnalysisandOptimisationFramework . . . . . . . . . . . 4 1.3 ThesisObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 DissertationStructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 AutomotiveAerodynamics 7 2.1 HistoryofAerodynamicsinPerformanceCarsDesign . . . . . . . . . . . . . . . . . . . . 7 2.1.1 TheImpactofMotorsportAerodynamicsonProductionCars . . . . . . . . . . . . 9 2.2 PerformanceCarsAerodynamicDevices. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Vehicle’sFront-End. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 Vehicle’sUnder-body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.3 Vehicle’sBack-End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 MethodsusedforEvaluatingAutomotivePerformance . . . . . . . . . . . . . . . . . . . . 13 2.3.1 NumericalSimulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.2 WindTunnelTesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.3 RoadandTrackTesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 TheoreticalBackground 17 3.1 AerodynamicTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.1 GoverningEquationsofFluidFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 ix 3.1.2 TurbulentFlowsandTurbulenceModelling . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 StructuresTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2.1 GoverningEquationsofSolidStructure . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2.2 First-OrderDeformationTheory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3 Fluid-StructureInteraction(FSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.1 MonolithicandPartitionedMethods . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 MultidisciplinaryDesignAnalysisandOptimisation(MDAO) . . . . . . . . . . . . . . . . . 26 3.4.1 MDAOArchitectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4.2 NumericalOptimisationTechniques . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4 MethodologyandNumericalModels 29 4.1 MDAOinANSYS(cid:13)R Workbench14.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 CADModel: ANSYS(cid:13)R DesignModeler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3 CFDModel: ANSYS(cid:13)R Fluent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3.1 ModelValidationwithNACA4415AirfoilTwo-DimensionalAnalyses . . . . . . . . 31 4.3.2 BenzingBE122-125AirfoilThree-DimensionalAnalyses . . . . . . . . . . . . . . 36 4.4 CSMModel: ANSYS(cid:13)R CompositePrepPostandMechanical . . . . . . . . . . . . . . . . 39 4.4.1 FiniteElementAnalysisSetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.5 FSIModel: ANSYS(cid:13)R SystemCoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.5.1 One-WayversusTwo-WayCoupling . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.6 OptimisationModel: ANSYS(cid:13)R DirectOptimisation . . . . . . . . . . . . . . . . . . . . . . 46 5 Results 51 5.1 MDAODesignVariablesandFunctionsofInterest . . . . . . . . . . . . . . . . . . . . . . 51 5.2 CADParametricDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2.1 AirfoilSelection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2.2 EndplateDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.2.3 VerticalWingSupportDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2.4 FlowDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.2.5 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.3 AerodynamicParametricStudies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3.1 EffectofHorizontalandVerticalPositioningofLowerWings . . . . . . . . . . . . . 58 5.3.2 EffectofChord,WingspanandAngleofAttack . . . . . . . . . . . . . . . . . . . . 60 5.3.3 EffectofEndplatesDimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.3.4 VerticalSupportsPositioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.4 AerodynamicOptimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.5 One-WayFSIStructuralParametricStudies . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.5.1 EffectofMaterialType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.5.2 EffectofNumberandOrientationofCompositePlies . . . . . . . . . . . . . . . . . 70 5.6 One-WayFSIStructuralOptimisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 x
Description: