A Multidisciplinary Approach to Quantum Field Theory, Volume 1 An introduction Online at: https://doi.org/10.1088/978-0-7503-3227-9 A Multidisciplinary Approach to Quantum Field Theory, Volume 1 An introduction Michael Ogilvie Department of Physics, Washington University, St. Louis, MO, USA IOP Publishing, Bristol, UK ªIOPPublishingLtd2022 Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem ortransmittedinanyformorbyanymeans,electronic,mechanical,photocopying,recording orotherwise,withoutthepriorpermissionofthepublisher,orasexpresslypermittedbylawor undertermsagreedwiththeappropriaterightsorganization.Multiplecopyingispermittedin accordancewiththetermsoflicencesissuedbytheCopyrightLicensingAgency,theCopyright ClearanceCentreandotherreproductionrightsorganizations. PermissiontomakeuseofIOPPublishingcontentotherthanassetoutabovemaybesought [email protected]. MichaelOgilviehasassertedhisrighttobeidentifiedastheauthorofthisworkinaccordancewith sections77and78oftheCopyright,DesignsandPatentsAct1988. ISBN 978-0-7503-3227-9(ebook) ISBN 978-0-7503-3225-5(print) ISBN 978-0-7503-3228-6(myPrint) ISBN 978-0-7503-3226-2(mobi) DOI 10.1088/978-0-7503-3227-9 Version:20221001 IOPebooks BritishLibraryCataloguing-in-PublicationData:Acataloguerecordforthisbookisavailable fromtheBritishLibrary. PublishedbyIOPPublishing,whollyownedbyTheInstituteofPhysics,London IOPPublishing,No.2TheDistillery,Glassfields,AvonStreet,Bristol,BS20GR,UK USOffice:IOPPublishing,Inc.,190NorthIndependenceMallWest,Suite601,Philadelphia, PA19106,USA To Judy, for everything Contents Preface xi Acknowledgement xiv Author biography xv 1 Introduction to quantum field theory 1-1 1.1 Natural units 1-1 1.2 The simple harmonic oscillator in classical mechanics 1-2 1.3 The harmonic oscillator in quantum mechanics 1-3 1.4 Photons 1-6 1.5 Paths to quantum field theory 1-9 Reference 1-10 2 Quantum mechanics and path integrals 2-1 2.1 Classical mechanics and fields 2-1 2.1.1 The Lagrangian formalism 2-2 2.1.2 Functional differentiation 2-3 2.1.3 Symmetry in classical mechanics 2-5 2.1.4 The Hamiltonian formalism 2-7 2.2 Quantum mechanics 2-8 2.2.1 Time evolution in the Schrödinger picture 2-9 2.2.2 The propagator for a free nonrelativistic particle* 2-9 2.2.3 The Heisenberg representation 2-11 2.2.4 Interactions 2-12 2.3 The Feynman path integral for one degree of freedom 2-13 2.3.1 Defining the path integral 2-13 2.3.2 Matrix elements and time ordering 2-16 2.3.3 Generating functions 2-19 2.3.4 The simple harmonic oscillator 2-20 2.3.5 Wick’s theorem 2-23 2.3.6 Perturbation theory and Feynman diagrams 2-24 Problems 2-30 Bibliography 2-32 vii AMultidisciplinaryApproachtoQuantumFieldTheory,Volume1 3 Classical fields 3-1 3.1 Wave equations in classical mechanics and quantum mechanics 3-1 3.2 Special relativity 3-2 3.2.1 Geometry of spacetime 3-4 3.2.2 Lorentz transformations of fields 3-5 3.3 The Lagrangian formalism for fields 3-6 3.3.1 The Klein–Gordon equation 3-7 3.3.2 Maxwell’s equations 3-9 3.3.3 The Schrödinger equation 3-10 3.4 Continuous symmetries in classical field theory 3-11 3.4.1 Example: translation in space and time 3-13 3.5 The Hamiltonian formalism 3-15 3.6 Causality 3-15 Problems 3-19 4 Free quantum fields 4-1 4.1 The Feynman path integral for field theories 4-1 4.2 Free scalar fields 4-3 4.3 Another approach to the functional integral 4-5 4.4 Interpretation of Z[0] for free fields 4-5 4.5 Vacuum energy examples 4-6 4.5.1 Casimir effect 4-7 4.5.2 Energy of field interacting with a static source 4-8 4.6 Fock space 4-9 4.7 Relativistic invariance and Fock space 4-13 4.8 Free quantum fields in Fock space 4-15 4.9 The canonical commutation relations and causality 4-16 4.10 Equivalence to the functional integral formalism 4-18 4.11 Continuous symmetries in quantum field theories 4-18 Problems 4-21 Further reading 4-21 5 Interacting quantum fields 5-1 5.1 Perturbation theory and Feynman diagrams 5-2 5.2 Feynman diagrams in position space 5-4 5.3 Feynman diagrams in momentum space 5-6 viii AMultidisciplinaryApproachtoQuantumFieldTheory,Volume1 5.4 Scattering theory 5-8 5.5 A toy model of nucleons and pions 5-10 5.5.1 The NN and N¯N¯ scattering amplitude 5-11 5.5.2 The NN¯ scattering amplitude 5-13 5.5.3 Mandelstam variables and crossing symmetry 5-13 5.5.4 Four more processes: Nϕ → Nϕ, N¯ϕ → N¯ϕ, NN¯ → ϕϕ 5-16 and ϕϕ → NN¯ 5.6 The CPT theorem 5-17 5.7 Cross-sections and decay rates 5-18 5.7.1 Decay rates 5-20 5.7.2 Cross-sections 5-22 Problems 5-24 Reference 5-25 6 Renormalization 6-1 6.1 Mass renormalization 6-2 6.2 Coupling constant renormalization 6-6 6.3 Field renormalization 6-13 6.4 Renormalization: a systematic process 6-14 6.5 Renormalizability 6-16 6.6 Matrix elements and the LSZ reduction formula 6-19 Problems 6-20 Bibliography 6-21 7 Symmetries and symmetry breaking 7-1 7.1 Internal symmetries 7-1 7.1.1 Introduction to spontaneous symmetry breaking 7-3 7.2 Spontaneous symmetry breaking and perturbation theory 7-7 7.3 Broken continuous symmetries and Goldstone bosons 7-9 7.3.1 Examples of Goldstone bosons 7-10 7.4 Renormalization of models with spontaneous symmetry breaking 7-12 Problems 7-14 8 Fermions 8-1 8.1 Introduction to the Dirac equation 8-1 8.2 Representations of the Lorentz group 8-3 ix