ebook img

Multidimensional Gravity with p-branes PDF

3 Pages·0.08 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multidimensional Gravity with p-branes

MULTIDIMENSIONAL GRAVITY WITH P-BRANES V.D.IVASHCHUK and V.N. MELNIKOV Center for Gravitation and Fundamental Metrology, VNIIMS, 3-1 M. Ulyanovoy Str., Moscow, 117313, Russia 8 9 9 1 1 The model n a J We consider the model governed by the action 3 1 S = dDz |g|{R[g]−2Λ−h gMN∂ ϕα∂ ϕβ (1) ZM p αβ M N 1 θ v − na!exp[2λa(ϕ)](Fa)2g}, 1 aX∈∆ a 4 0 where g =g dzM ⊗dzN is the metric, ϕ=(ϕα)∈IRl is a vector from dilatonic MN 1 scalar fields, (h ) is a non-degenerate l×l matrix (l ∈ IN), θ = ±1, Fa = dAa 0 αβ a is a n -form (n ≥1) on a D-dimensional manifold M, Λ is cosmological constant 8 a a 9 and λa is a 1-form on IRl: λa(ϕ) = λaαϕα, a ∈ ∆, α = 1,...,l. In (1) ∆ is some / finite set. In the models with one time all θ =1 when the signature of the metric c a q is (−1,+1,...,+1). - We consider the manifold r g : M =M0×...×Mn (2) v i X with the metric n r g =e2γ(x)g0+ e2φi(x)gi, (3) a X i=1 where g0 = g0 (x)dxµ ⊗ dxν is an arbitrary metric with any signature on the µν manifoldM andgi =gi (y )dymi⊗dyni isametriconM satisfyingtheequation 0 mini i i i i R [gi]=ξ gi , (4) mini i mini m ,n = 1,...,d ; ξ = const, (thus, (M ,gi) is Einstein space) i = 1,...,n. The i i i i i functions γ,φi :M →IR are smooth. 0 EachmanifoldM is assumedto be orientedandconnected, i=1,...,n. Then i the volume d -form τ = |gi(y )| dy1 ∧...∧dydi and the signature parameter i i i i i ε(i)=signdet(gi )=±1pare correctly defined for all i=1,...,n. mini Let Ω be a set of all subsets of I ≡{1,...,n}. For any I ={i ,...,i }∈Ω , 0 0 1 k 0 i <...<i , we define a form 1 k τ(I)≡τ ∧...∧τ , (5) i1 ik 1 of rank d(I) = d +...+d , and a corresponding p-brane submanifold M ≡ i1 ik I M ×...×M , where p=d(I)−1. We also define ε-symbolε(I)≡ε(i )...ε(i ). i1 ik 1 k For I =∅ we put τ(∅)=ε(∅)=1, d(∅)=0. For fields of forms we adopt the following ”composite electro-magnetic”ansatz Fa = F(a,e,I)+ F(a,m,J), (6) I∈XΩa,e J∈XΩa,m where F(a,e,I) =dΦ(a,e,I)∧τ(I), (7) F(a,m,J) =e−2λa(ϕ)∗ dΦ(a,m,J)∧τ(J) , (8) (cid:16) (cid:17) a ∈ ∆, I ∈ Ω , J ∈ Ω and Ω ,Ω ⊂ Ω . In (8) ∗ = ∗[g] is the Hodge a,e a,m a,e a,m 0 operator on (M,g). For the potentials in (7), (8) we put Φs =Φs(x), (9) s∈S, where S =S ⊔S , S ≡ {a}×{v}×Ω , (10) e m v a,v aa∈∆ v =e,m. For dilatonic scalar fields we put ϕα =ϕα(x), (11) α=1,...,l. ¿From(7)and(8)weobtaintherelationsbetweendimensionsofp-braneworld- sheetsandranksofforms: d(I)=n −1, I ∈Ω ;d(J)=D−n −1, J ∈Ω , a a,e a a,m in electric and magnetic cases respectively. 2 Sigma model representation We consider the case d =dimM 6=2 and use generalized harmonic gauge 0 0 n 1 γ =γ (φ)= d φi (1) 0 2−d i 0 X i=1 (d = dimM ). For the model under consideration the equations of motion and i i Bianchi identities dFs =0,s∈S, are equivalent to the equations of motion for the σ-model with certain constraints imposed 3. The σ-model action reads 3 S = dd0x |g0| R[g0]−G g0 µν∂ φi∂ φj −2V(φ)−L , (2) σ ZM0 p n ij µ ν o 2 where d d G =d δ + i j (3) ij i ij d −2 0 arethe componentsofthe (”purelygravitational”)midisuperspacemetriconIRn 1, i,j =1,...,n, and n 1 V =V(φ)=Λe2γ0(φ)− ξ d e−2φi+2γ0(φ) (4) i i 2 X i=1 is the potential and L=h g0 µν∂ ϕα∂ ϕβ + ε exp(−2Us)g0 µν∂ Φs∂ Φs. (5) αβ µ ν s µ ν aX∈∆Xs∈S Here Us =Us(φ,ϕ)=−χ λ (ϕ)+ d φi, (6) s as i iX∈Is ε =(−ε[g])(1−χs)/2ε(I )θ (7) s s as fors=(a ,v ,I )∈S,ε[g]=signdet(g ),andχ =+1,forv =e,andχ =−1, s s s MN s s s for v =m. s 3 Exact solutions In 3,4 the Majumdar-Papapetrou type solutions were obtained in orthogonal case (Us,Us′)=0,s6=s′. (For non-composite case see 1,2). These solutions correspond to Ricci-flat (M ,gi), i=0,...,n, and were generalizedalso to the case of Einstein i internal spaces 3. In 5 the Toda-lattice generalizationof the ”orthogonal”intersec- tion rules was obtained and cosmological and spherically symmetric (classical and quntum) solutions were considered. References 1. V.D.IvashchukandV.N.Melnikov,”Intersectingp-BraneSolutionsinMultidimen- sional Gravity and M-Theory”, hep-th/9612089; Gravitation and Cosmology 2, No 4, 297 (1996). 2. V.D.Ivashchukand V.N.Melnikov, Phys. Lett. B 403, 23 (1997). 3. V.D. Ivashchuk and V.N. Melnikov, ”Sigma-Model for Generalized Composite p- branes”, hep-th/9705036, Class. and Quant. Grav. 14 (11), 3001-3029 (1997). 4. V.D. Ivashchuk, V.N. Melnikov and M. Rainer, ”Multidimensional Sigma-Models with Composite Electric Composite p-branes”, gr-qc/9705005. 5. V.D.IvashchukandV.N.Melnikov,”MultidimensionalClassicalandQuantumCos- mology with Intersecing p-Branes”, hep-th/9708157, to appear J. Math. Phys.. 3

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.