ebook img

Multicriteria Decision Aid Methods for the Prediction of Business Failure PDF

190 Pages·1998·8.882 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multicriteria Decision Aid Methods for the Prediction of Business Failure

Multicriteria Decision Aid Methods for the Prediction of Business Failure Applied Optimization Volume 12 Series Editors: Panos M. Pardalos University 0/ FZorida, U.S.A. Donald Hearn University 0/ FZorida, U.S.A. The titZes published in this series are listed at the end 0/ this voZurne. Multicriteria Decision Aid Methods for the Prediction of Business Failure by Constantin Zopounidis Technical University ofCrete and Augustinos I. Dimitras Technical University ofCrete SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 978-1-4419-4787-1 ISBN 978-1-4757-2885-9 (eBook) DOI 10.1007/978-1-4757-2885-9 Printed on acid-free paper All Rights Reserved © 1998 Springer Science+ Business Media Dordrecht Originally published by Kluwer Academic Publishers in 1998 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, e1ectronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. "Education is the sunfor the learned" Heraclitus To our parents AKNOWLEDGMENTS We are grateful to Professor P.M. Pardalos for bis great interest to publish this work in the series "Applied Optimization" as weIl as for bis encouragement and helpful comments during writing of this work. Also, we are obliged to M. Doumpos and Tb. Mavridou, both Ph.D. candidates in Technical University of Crete, for their important notes on an earlier version and their great help in the preparation of the final manuscript. TADLE OF CONTENTS Aknowledgrnents..................................................................................... ix Table ofContents ................................................................................... xi List ofTables ......................................................................................... xv List ofFigures ...................................................................................... , xix Prologue ............................................................................................ xxi Chapter I. Business Failure Research: Some Statistics, Methods, Models and Variables ............................................................ 1 1.1. Introduction .............................................................................. 1 1.2. Methods and models ................................................................. 6 1.2.1. Univariate statistical methods ......................................... 7 1.2.2. Discriminant analysis ..................................................... 8 1.2.3. Linear probability modeL ............................................. 12 1.2.4. Logit and probit analyses .............................................. 13 1.2.5. Recursive partitioning algorithm ................................... 16 1.2.6. SurvivaI Analysis ......................................................... 19 1.2.7. Expert Systems ............................................................. 21 1.2.8. Neural Networks .......................................................... 22 1.3. Financial ratios and other characteristics ................................. 24 1.4. Conclusions ............................................................................ 30 Chapter 11. Multicriteria Decision Aid Methodology ................................ 31 2.1. Introduction ............................................................................ 31 2.2. Multiobjective Mathematical Programming ............................. 33 2.2.1 Multiobjective Mathematical Programming for bankruptcy prediction ................................................... 34 2.3. Multiattribute Utility Theory .................................................. 38 2.4. Outranking Relations Approach .............................................. 39 2.5. Preference Disaggregation Approach ...................................... 41 2.6. Multicriteria Analysis and Business Failure ............................ 42 Chapter III. ELECTRE TRI Method and Business Failure Prediction ...... 45 3.1. Introduction ............................................................................ 45 3.2. ELECTRE TRI ...................................................................... 46 3.3. The study ofDimitras, Zopounidis and Hurson (1995) ............ 53 3.3.1. Sampie and data ........................................................... 53 xii 3.3.2. Classification Results ................................................... 55 3.4. The study ofDimitras (1995) .................................................. 60 3.4.1. SaIllple and data ........................................................... 60 3.4.2. Classifica.tion Results ................................................... 61 3.4.3. Comparison between ELECTRE TRI and discriminant analysis .................................................... 66 3.5. Concluding remarks ................................................................ 67 Chapter IV. Rough Sets and Business Failure Prediction .......................... 69 4.1. Introduction ............................................................................ 69 4.1.1. Information table and indiscemibility relation ................ 69 4.1.2. Approximation ofsets ................................................... 70 4.1.3. Reduction and dependency of attributes ......................... 71 4.1.4. Decision roles ............................................................... 72 4.1.5. Decision support using decision roles ............................ 73 4.1.6. Valued closeness relation (VeR) ................................... 74 4.2. The study ofSlowinski and Zopounidis (1995) ........................ 77 4.2.1. SaIllple and data ........................................................... 77 4.2.2. Application ................................................................... 78 4.3. The study of Dimitras, Slowinski, Susmaga, and Zopounidis (1997) ................................................................. 89 4.3.1. SaIllple and data ........................................................... 89 4.3.2. Applica.tion ................................................................... 89 4.3.3. Comparison of the rough set approach with the discriminant analysis .................................................... 99 4.3.4. Comparison ofthe rough set approach withthe Iogit analysis................................................................. . .. .. 103 4.4. The study ofGreco, Matarazzo and Slowinski (1997) ........... 106 4.4.1. SaIllple and data ......................................................... 110 4.4.2 Applica.tion .................................................................. 111 4.5. Concluding remarks .............................................................. 116 Chapter V. Preference Disaggregation Method and Business Failure Prediction.......................................................................... 117 5.1. Introduction .......................................................................... 117 5.2. The UTA Method ................................................................. 117 5.3. The study ofZopounidis (1987) -The MINORA System ...... 119 5.3.1. Firststep .................................................................... 126 5.3.2. Second Step ................................................................ 129 xiii 5.3.3. Third step ................................................................... 130 5.3.4. Fourth step ................................................................. 131 5.3. The study of Zopounidis and Doumpos (1997) - The UTADIS method ................................................................... 135 5.3.1. The UTADIS method ................................................. .135 5.3.2. SaInple and data ......................................................... 139 5.3.3. Classification results ................................................... 142 5.3.4. Comparison between UTADIS and Discriminant Analysis ..................................................................... 143 5.4. Concluding remarks .............................................................. 145 Conclusions .......................................................................................... 147 References ........................................................................................... 151

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.