ebook img

Multiband tight-binding model of local magnetism in GaMnAs PDF

0.24 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multiband tight-binding model of local magnetism in GaMnAs

Multiband tight-binding model of local magnetism in Ga Mn As 1−x x Jian-Ming Tang and Michael E. Flatt´e Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242-1479 Wepresentthespinandorbitallyresolvedlocaldensityofstates(LDOS)forasingleMnimpurity and for two nearby Mn impurities in GaAs. The GaAs host is described by a sp3 tight-binding 4 Hamiltonian, and the Mn impurity is described by a local p-d hybridization and on-site potential. 0 Local spin-polarized resonances within the valence bands significantly enhance the LDOS near the 0 band edge. For two nearby parallel Mn moments the acceptor states hybridize and split in energy. 2 Thusscanningtunnelingspectroscopy candirectly measuretheMn-Mninteraction asafunction of n distance. a J PACSnumbers: 75.50.Pp,75.30.Hx,75.30.Gw,71.55.-i 7 2 The successful growth of ferromagnetic diluted mag- magnetic interaction. The LDOS near the valence band ] netic semiconductors (DMSs) based on III-V com- edge is significantly enhanced by these resonances. Each i c pounds[1,2,3,4,5]hasattractedmuchattentiondueto MndopantcanenhancetheLDOSbyasmuchasafactor s the nearby metal-insulator transition and also for their of2upto the second-nearestneighbors(See Fig.1), cor- - l potential application to nano-scale nonvolatile storage responding to a ∼ 7% increase of the average LDOS for r t devices and to quantum computation [6, 7]. In order 1%Mnconcentration. ThestrongLDOSenhancementis m to turn a nonmagnetic semiconductor into a magnet, a consistentwithrecentangle-resolvedphotoemissionmea- . t sizable amount (∼ 1%) of magnetic dopants are intro- surements[16],andqualitativelyexplainstheincreasesof a m duced. Experimental studies [2, 8, 9, 10, 11, 12] have the absorption coefficients in the intraband [12] as well shown strong correlations between the ferromagnetism as the interband absorption spectroscopies [9, 10]. In - d and the hole carriers that are also contributed by the particular, the experimental result that the band-edge n Mn doping in the III-V DMSs. The emerging picture of absorption coefficient increases in finite magnetic fields o this ferromagnetism is that the Mn magnetic moments more for one polarization of light is consistent with our c are localized, and the ferromagnetic coupling is medi- result that the resonances are both orbitally- and spin- [ ated through the delocalized hole carriers [6, 13]. A polarized. 3 deeper understanding of this ferromagnetic coupling has Whereas the spin-polarized band-edge resonances will v been hampered by insufficient knowledge of the valence alter the Mn-Mninteraction,the acceptorstates provide 8 1 band structure. The assumption that the holes reside adirectmeansofmeasuringthatinteraction. Theaccep- 1 in the unperturbed valence bands of the host semicon- tor level of Mn splits when two Mn magnetic moments 5 ductors [2, 8, 14] has recently been questioned by both arein a parallelconfiguration[19]. The range ofinterac- 0 theoretical and experimental studies [10, 12, 15, 16]. Ef- tion between the Mn dopants can be probed by the size 3 fective mass theories provide good spectral resolution at of the splitting as a function of the separation. We find 0 / the band edge, but cannot describe distortions on dis- thatthe splittings areaslargeastens ofmeVevenwhen t a tances of one or two lattice constants for they are only twoMndopantsareseparatedbyafewlatticeconstants. m accurateformomentaclosetotheΓpoint. Densityfunc- This magnetic interaction is anisotropic with respect to - tionalcalculations [17, 18], however,describe localprop- theaxisconnectingthetwoMndopantsduetospin-orbit d ertieswell,butstateoftheartsupercellcalculationshave interaction,inqualitativeagreementwiththecontinuum n not had sufficient spectral resolution to resolve the shal- model [20]. Both the local enhancement of the valence o c low bound states in the gap and the sharp resonances in bandedgeandthesplittingoftheacceptorlevelcouldbe : the valence bands. probed by scanning tunneling spectroscopy (STS) [21]. v i In this Letter we study the local density of states As pointed out by Vogl and Baranowski [22], the X (LDOS)ofverydiluteconcentrationsofMninGaAsasa fivefold degenerate Mn 3d-orbitals split in a cubic lat- ar prototype III-V DMS, and show that the valence bands tice to an E-symmetric (dx2−y2-like) doublet, which is are strongly altered by the Mn dopants, and in return only weakly coupled to the tetrahedral host, and a T2- influence the interaction between the Mn magnetic mo- symmetric (d -like)triplet, which caneffectively couple xy ments. In order to obtainboth sufficient spectral resolu- to the neighboring dangling sp3-hybrids. The antibond- tion and proper dispersion relations throughout the full ingstatesoftheT2-symmetricstatesandthesp3-hybrids Brillouinzone,amultibandtight-bindingapproachincor- form the acceptor states within the gap. These anti- porating spin-orbit interaction is employed. Our results bondingstatesaredelocalizedinspacesincetheyoverlap show that the hybridization between the Mn 3d-orbitals stronglywiththehostvalencebands. Inourcalculations andtheGaAsvalencebandsleadstospin-polarizedreso- thehybridizationofthemajorityMnd-orbitalsistreated nances within the valence bands and to delocalizedferro- asaneffectiveextendedspin-dependentpotentialU1 act- 2 ingonthefournearest-neighborsitesofMn,becauseonly 4 2 Hsaamndiltponoirabni.taTlshaeroepeexrpatliocritfloyrmuseodf4oinuroMurntipgohtte-nbtiinadliinsg -1(eV) 23 (a) Mn ↑↓ (b) As (cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) 11.5 V = U0Xc†ℓs(R0)cℓs(R0)+U1XXc†ℓ↑(Rj)cℓ↑(Rj), ates 1 0.5 ℓ,s j=1 ℓ st f (1) y o (swchℓesel(erRcet)rU)o0nisisitnhtehtehcreoenaℓ-tsiooitrnebi(otaarnblniatiahtlilsaeintteieornRg)y.odpTieffrheaerteoMnrcnoef,daco†ℓsspp(aRinn)t- ocal densit00..46 (c) Ga (cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) (d) Ga (cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1) 00..46 is located at R0, and the four nearest-neighbor sites are L0.2 0.2 labeled by R1-R4. We neglect the difference of the po- tentialmatrixelementsbetweenthe s andporbitals,be- 0 0 -1.5 -1 -0.5 0 -1 -0.5 0 0.5 causethes-orbitalsmakeanegligiblecontributiontothe Energy (eV) LDOSnearthevalencebandedge. Thequantizationaxis for the spin is aligned with the Mn core spin. The mi- FIG.1: LDOSspectraforthecharged(ionized)Mndopantin nority Mn d-orbitals are assumed to be much higher in Ga1−xMnxAs(correspondingtobulkn-doped)at(a)theMn energy, and the hybridization energy of them with the site,at(b)oneofthenearest-neighborAssites,andat(cand spin-down states is neglected. We find that the effective d) one of the second-nearest-neighbor Ga sites. The shaded potential U1 is of critical importance in inducing the ac- balls in each panel show the corresponding atomic sites, and ceptor level at the experimentally observed energy. The theblackballshowstheMnsite. TheMncorespinisaligned with the z-axis of the lattice, and the z-axis is aligned ver- significanceof the hybridizationto the acceptorlevelen- tically. In this particular case, the spectra at four nearest- ergy has also been noted recently by Dietl et al. [23]. As neighborsitesareidentical, andhavetwodifferentfunctional for the delocalized nature of the acceptor state, our re- forms at the second-nearest-neighbor sites. The total LDOS sults show that only about 10%of the spectralweightof isshownbythesolidlines. Thedashedlinesshowtheprojec- the acceptor state is concentrated at the Mn site, 20% tions onto the two spin polarizations relative to the Mn core is distributed over the four nearest-neighbor sites, and spin. The dotted lines show the LDOS of the bulk GaAs. the remaining 70% is extended to farther sites. Further- The zero of energy is the valence maximum of bulk GaAs. The valence band LDOS of bulk GaAs is more concentrated more, the large spin-orbit interaction of GaAs splits the at the As sites than at the Ga sites, because the LDOS is gap states into three different energy levels, and intro- thedensity of states modulated by theprobability density of duces anisotropy to the spatial structure. electrons. FortheneutralMn dopant (corresponding tobulk WeusetheKoster-Slatertechnique[24]tocalculatethe p-doped Ga1−xMnxAs) only the highest energy peak of the Green’s function whose imaginary part gives the LDOS. three localized peaks apparent above in each panel would be Thismethodhasbeenproventogivethecorrectchemical visible. trend of impurity levels in semiconductors [25], and we have previously applied it to successfully predict STM where Gˇ(ω) is the full matrix representation using all spectra near impurities in superconductors [26]. Start- ing with the tight-binding Hamiltonian Hˆ0(k) of homo- asittoemRic iosrbgiitvaelns bayt all lattice sites. The LDOS at each geneous GaAs, one first calculates the retarded Green’s i function, Gˆ0(k,ω) = [ω − Hˆ0(k) + iδ]−1. To obtain 1 A(R ,ω) = − Im tr Gˆ(R ,R ,ω) , (3) a good description of the valence band structure, we i π h α i i i use the sp3 model including spin-orbit interaction [27]. Then, by Fourier transforming Gˆ0(k,ω), we construct where the trα is taken with respect to the orbitals of the the homogeneous Green’s function in coordinate space, α atom, depending on which type of atom is actually Gˆ0(Ri,Rj,ω),whereRi andRj labelthezincblendelat- located at the site Ri. tice sites. This step consumes the majority of computa- TodeterminethevaluesofU0 andU1,wefirstconsider tion time. It takes about one day for one link (R −R ) the possibility that the potential is nonzero only at the i j with a spectral range of 2 eV on a personal computer. Mn site (U1 =0), and the size of the on-site potential is The number of links used in this study is about 500. A assumed to be the same for all orbitals. When the Mn constantlinewidth of δ =10 meV produces a good spec- atomreplacesaGaatom,the strengthofthison-sitepo- tral resolution within a reasonable computation time. tentialis estimated to be U0 ∼1 eV basedonthe energy The final Green’s function is obtained by solving the difference of the ionizationenergies of Ga (4s24p)and of Dyson’s equation, Mn (3d54s4p), which are about 6 and 5 eV respectively. Notonlyisthison-sitepotentialtooweaktobindanyac- Gˇ(ω) = Gˇ0(ω)+ 1ˇ−Gˇ0(ω)Vˇ −1Gˇ0(ω), (2) ceptorlevelinthegap,itisnotpossible(evenwithanun- (cid:2) (cid:3) 3 p + i p p p − i p x y z x y 7 (a) (b) (c) ) 1 6 -V e ( s 5 e at st4 f o i sity 3 n ii e d2 cal iii o1 L iv 0 0 0.1 0.2 0 0.1 0.2 0 0.1 0.2 Energy (eV) FIG.3: Theorbitally resolved LDOSfor(a)px+ipy,(b)pz FIG.2: (color) Thespatial structureof(a) theMn acceptor and (c) px−ipy orbitals. The Mn core spin is aligned with levelat 113 meVand of (b)thevalencebandLDOSat −500 the z-axis. Each panel contains four LDOS curves. From meV.TheLDOSpeaksarecenteredattheMnatom,andare top to bottom, the curvesshow theLDOS at (i) theMn, (ii) extended mainly on the (001) plane. In (b), far away from the nearest-neighbor (As) sites, and (iii and iv) the second- theMn site, thesites with higher LDOS are occupied by the nearest-neighbor (Ga) sites. Cases (iii) and (iv) correspond Asatom,andwithlowerLDOSareoccupiedbytheGaatom. to the configurations (c) and (d) in Fig. 1 respectively. The We have assumed that the squared modulus of the Wannier LDOS spectra are shifted by multiples of one unit for easier functions to be a Gaussian with a width of half the distance visualization. between neighboring Ga and As atoms. spin-polarized (parallel to the Mn core spin) and split realisticallylargeon-sitepotential,U0 ≫10eV)tobinda into three energylevelsdue to the spin-orbitinteraction. holemorethan60meVabovethevalencebandedge. The Forbulkn-dopedGa1−xMnxAstheFermilevelliesabove Mndopantintroducesanacceptorlevelat113meVabove the upper acceptor state, so the impurity is ionized and the valence band edge, therefore, the effective potential all three levels would be visible in a tunneling experi- mustbeextendedatleasttothefournearest-neighborAs ment. If the Fermi level lies below the upper acceptor sites. If we fix U0 = 1 eV, and tune U1 to give the cor- state,suchasinbulkp-dopedGa1−xMnxAs,thendueto rect acceptor level energy, the required nearest-neighbor the electron-electron interaction only one localized state potential is about 3.59 eV. This nearest-neighborpoten- will be visible above the Fermi level and none below. tial is too large to be accounted for by the tail of the Due to band-bending at the surface it is often possible screened Coulomb potential. The screened Coulomb po- to see both the ionized and neutral dopants in the same tential at the nearest-neighbor sites of a singly charged sample (as in Ref. 21). As the Mn core spin rotates, Mn center is only about 0.5 eV, or even smaller if the the orbital character of the acceptor states changes, but system is doped with carriers, as in our case. Therefore, the three energy levels remain the same within the sp3 the large effective potential at the nearest-neighbor sites model. There is some experimental evidence for the ex- must resultfrom the hybridizationof the Mn 3d-orbitals istence of the two additional acceptor energy levels [29]. and the host sp3-hybrids. The exchange interaction ef- Thesignificantenhancementofthespin-upLDOScontin- fectively pushes the valence-band states with the same uesintothevalencebandto1.5eVbelowthe bandedge. spin polarization as the Mn core spin into the gap. The The spin-polarizedresonances emerge at an energy close states with the opposite spin polarization essentially re- to the split-off band top (∼ 350 meV below the band main unperturbed. edge). Onthe other hand, the spin-downband is weakly Figure1showstheLDOSspectraattheMnsiteandat perturbed and non-resonant. Figure 1 (c) and (d) also neighboring sites. In this particular case we have chosen show that the large enhancement of the valence band the Mn core spin to align with one of the (100) crystal LDOS extends to the second-nearest neighbors. From axes (which is the bulk easy axis [28]). As a result, the the spectral weight of the acceptor state, ∼ 5% at each spectra at the four nearest-neighbor As sites are identi- As site,we estimate the p-dexchangeinteractionβN0 to cal due to the residual symmetry operations of C2 and be 52U1 ×20% ≈ −0.3 eV, within a factor of 3 of that S4 about the crystal axes. The twelve second-nearest- obtainedfromtransportmeasurements(seeChapter1in neighbor Ga sites are divided into two classes with four Ref. 6). The discrepancy may come from the enhanced andeightsiteseach. Theacceptorstatesarealmostfully LDOS near the Mn spin, which is not included in the 4 1) 4 orbital character more extended in the plane perpendic- -V 3 (a) 18 17 14 18 ular to the Mn core spin, the splitting of the acceptor e s ( 2 level is the largest when the Mn core spins are oriented e stat 1 71 62 63 54 perpendicular to the axis that joins them. f In summary we have presented calculations of the sity o 43 (b) [001] 100 LduDcOesSspniena-rpoMlanriziendGreasoAnsa.ncTeshtehapt-denhhyabnrcieditzhaetioLnDOinS- n de 2 near the valence band edge. The spin-orbit interaction al 1 Mn 140 splitstheacceptorlevel,andintroducesanisotropytothe c Lo 0 -0.1 0 0.1 0.2 [−110] MThne-MranngineteorfatchteioMn nin-Madndiintitoenratcotitohneicsrsyhsotawlnantoisoetxrtoepnyd. Energy (eV) through several lattice constants. For quantitative com- parisons with STS measurements, significant surface ef- FIG.4: Splittingoftheacceptor levels. The left panelshows fectsareexpectedforaMnatomatthetoplayerbecause the spectra at the Mn site with two Mn dopants separated theMnatomhasonelessAsneighbor,andthehybridiza- by (a) (0,0,3) and (b) (−3/2,3/2,0). The dashed line shows tionchanges. However,ithas beenreportedthat dopant the spectrum when there is only one Mn dopant. In (b) the atoms as deep as in the fifth layer are seen by STS [21], twosplitpeaksofthe113meVlevelareindicatedbythetwo and the spectra for these cases should closely resemble heavy-line segments. The right panel shows the amount of the splitting of the 113 meV level. One of the Mn atoms is the bulk. locatedatthe(0,0,0)site(bottom-leftcorner),andtheother This work was supported under the ARO MURI is at one of the circles. The number in the circle shows the DAAD19-01-1-0541. splittingenergyinmeV.BothMncorespinsarealignedwith thez-axis. The black dots show the Assites. transport modeling. [1] H. Munekataet al., Phys.Rev.Lett. 63, 1849 (1989). ThespatialstructureoftheLDOSisfurtherillustrated [2] H. Ohnoet al., Phys. Rev.Lett. 68, 2664 (1992). in Fig. 2. For the Mn potential used here, the upper ac- [3] G. A. Medvedkin et al., Jpn. J. Appl. Phys. 39, L949 ceptor state is peakedatthe Mn site. The ratiobetween (2000). the peak heights at the Mn and at the nearest-neighbor [4] M. L. Reed et al., Appl.Phys. Lett. 79, 3473 (2001). As sites is related to the strength of U0 and U1. Gen- [5] S.Sonodaetal.,J.Cryst.Growth237–239,1358(2002). [6] Semiconductor Spintronics and Quantum Computation erally, increasing the potential strength at one site re- D. D. Awschalom, N. Samarth, and D. Loss, eds., duces the spectral weight at the same site. The degree (Springer Verlag, Heidelberg, 2002). of acceptor-statelocalization apparentin Fig. 2 is deter- [7] S. A. Wolf et al., Science 294, 1488 (2001). mined largely by the effective band masses of the GaAs [8] F. Matsukuraet al., Phys.Rev.B 57, R2037 (1998). host, which are dependent on the tight-binding parame- [9] J. Szczytkoet al., Phys. Rev.B 59, 12935 (1999). ters of Ref. 27. If the spin is aligned with the z axis, the [10] B. Beschoten et al., Phys. Rev.Lett. 83, 3073 (1999). uppermostacceptorstateisspatiallyextendedinthex-y [11] H. Ohnoet al., Nature (London) 408, 944 (2000). [12] Y.Nagaietal.,Jpn.J.Appl.Phys.40,6231(2001);E.J. plane, because the orbital character, shown in Fig. 3, is Singley et al., Phys. Rev.Lett. 89, 097203 (2002). p +ip . x y [13] T. Dietl et al., Science 287, 1019 (2000). WealsocalculatetheLDOSfortwonearbyMndopants [14] T. Dietl, A. Haury, and Y. M. d’Aubign´e, Phys. Rev. B by inverting the Dyson equation for a two-impurity po- 55, R3347 (1997). tential. Whenthe twoMncorespinsareparallel,theac- [15] H. Akai,Phys. Rev.Lett. 81, 3002 (1998). ceptor states centered at the two Mn sites interfere, and [16] J. Okabayashiet al., Phys. Rev.B 64, 125304 (2001). [17] S.Sanvito,P.Ordej´onandN.A.Hill, Phys.Rev.B 63, further split into “bonding” and “antibonding” states. 165206 (2001). When the two Mn core spins are antiparallel, one of the [18] M. van Schilfgaarde and O. N. Mryasov, Phys. Rev. B U1 terms acts on spin-down As-orbitals, and the poten- 63, 233205 (2001). tial for the spin-up (down) states at one Mn site is the [19] M.E.Flatt´eandD.E.Reynolds,Phys.Rev.B 61,14810 same as for the spin-down (up) states at the other Mn (2000). site. Therefore, the acceptor states remain in three de- [20] G. Zar´and and B. Jank´o, Phys. Rev. Lett. 89, 047201 generate levels. The splitting of the acceptor level for (2002). [21] R. M. Feenstra et al., Phys. Rev.B 66, 165204 (2002). two parallel Mn core spins can be used as a probe for [22] P. Vogl and J. M. Baranowski, Acta. Phys. Polo. A67, the range of interaction between Mn dopants. Figure 4 133 (1985). shows the long-ranged nature of the interaction. It also [23] T.Dietl,F.Matsukura,andH.Ohno,Phys.Rev.B 66, showstheanisotropyoftheinteractionresultingfromthe 033203 (2002). spin-orbitinteraction. Becausethe acceptorstate hasan [24] G.F.KosterandJ.C.Slater,Phys.Rev.95,1167(1954). 5 [25] H.P.Hjalmarsonetal.,Phys.Rev.Lett. 44,810(1980). [27] D. J. Chadi, Phys.Rev. B 16, 790 (1977). [26] J.-M. Tang and M. E. Flatt´e, Phys. Rev. B 66, [28] H. X.Tang et al., Phys.Rev. Lett. 90, 107201 (2003). 060504(R)(2002);M.E.Flatt´eand J.M.Byers,inSolid [29] T.C.LeeandW.W.Anderson,SolidStateCommun.2, State Physics, edited by H. Ehrenreich and F. Spaepen 265 (1964). (AcademicPress,NewYork,1999),vol.52,pp.137–228.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.