ebook img

Multi-time Wave Functions: An Introduction PDF

91 Pages·2020·2.041 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multi-time Wave Functions: An Introduction

SPRINGER BRIEFS IN PHYSICS Matthias Lienert Sören Petrat Roderich Tumulka Multi-time Wave Functions An Introduction 123 SpringerBriefs in Physics Series Editors BalasubramanianAnanthanarayan,CentreforHighEnergyPhysics,IndianInstitute of Science, Bangalore, India EgorBabaev,PhysicsDepartment,UniversityofMassachusettsAmherst,Amherst, MA, USA MalcolmBremer,HHWillsPhysicsLaboratory,UniversityofBristol,Bristol,UK Xavier Calmet, Department of Physics and Astronomy, University of Sussex, Brighton, UK FrancescaDiLodovico,DepartmentofPhysics,QueenMaryUniversityofLondon, London, UK Pablo D. Esquinazi, Institute for Experimental Physics II, University of Leipzig, Leipzig, Germany Maarten Hoogerland, University of Auckland, Auckland, New Zealand Eric Le Ru, School of Chemical and Physical Sciences, Victoria University of Wellington, Kelburn, Wellington, New Zealand Dario Narducci, University of Milano-Bicocca, Milan, Italy James Overduin, Towson University, Towson, MD, USA Vesselin Petkov, Montreal, QC, Canada Stefan Theisen, Max-Planck-Institut für Gravitationsphysik, Golm, Germany Charles H.-T. Wang, Department of Physics, The University of Aberdeen, Aberdeen, UK James D. Wells, Physics Department, University of Michigan, Ann Arbor, MI, USA Andrew Whitaker, Department of Physics and Astronomy, Queen's University Belfast, Belfast, UK SpringerBriefs in Physics are a series of slim high-quality publications encom- passing the entire spectrum of physics. Manuscripts for SpringerBriefs in Physics willbeevaluatedbySpringerandbymembersoftheEditorialBoard.Proposalsand other communication should be sent to your Publishing Editors at Springer. Featuring compact volumes of 50 to 125 pages (approximately 20,000–45,000 words),Briefsareshorterthanaconventionalbookbutlongerthanajournalarticle. Thus,Briefsserveastimely,concisetoolsforstudents,researchers,andprofessionals. Typicaltextsforpublicationmightinclude: (cid:129) A snapshot review of the current state of a hot or emerging field (cid:129) A concise introduction to core concepts that students must understand in order to make independent contributions (cid:129) Anextendedresearchreportgivingmoredetailsanddiscussionthanispossible in a conventional journal article (cid:129) A manual describing underlying principles and best practices for an experi- mental technique (cid:129) An essay exploring new ideas within physics, related philosophical issues, or broader topics such as science and society Briefs allow authors to present their ideas and readers to absorb them with minimal time investment. Briefs will be published as part of Springer’s eBook collection,withmillionsofusersworldwide.Inaddition,theywillbeavailable,just like other books, for individual print and electronic purchase. Briefs are characterized by fast, global electronic dissemination, straightforward publishing agreements, easy-to-use manuscript preparation and formatting guidelines, and expedited production schedules. We aim for publication 8–12 weeks after acceptance. More information about this series at http://www.springer.com/series/8902 ö Matthias Lienert S ren Petrat (cid:129) (cid:129) Roderich Tumulka Multi-time Wave Functions An Introduction 123 Matthias Lienert SörenPetrat Fachbereich Mathematik Mathematical Sciences Eberhard-Karls-UniversitätTübingen JacobsUniversity Bremen Tübingen,Baden-Württemberg, Germany Bremen, Germany Roderich Tumulka Fachbereich Mathematik Eberhard-Karls-UniversitätTübingen Tübingen,Baden-Württemberg, Germany ISSN 2191-5423 ISSN 2191-5431 (electronic) SpringerBriefs inPhysics ISBN978-3-030-60690-9 ISBN978-3-030-60691-6 (eBook) https://doi.org/10.1007/978-3-030-60691-6 ©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2020 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface A multi-time wave function is a quantum-mechanical wave function wðx1;...;xNÞ which, for N particles, depends on N space-time variables xi ¼ðti;xiÞ2R4, and thus on N time variables. It provides a natural generalization of wave functions to relativistic space-time, in fact, a covariant position-representation of the quantum state. As we elucidate, the applicability of this simple and elegant concept is not limited to quantum mechanics but also comprises quantum field theory, where the configuration is allowed to consist of any (variable) number N of particles. Since simultaneous PDEs for several time variables can easily be inconsistent, the requirementofconsistencyrestrictsthepossibletimeevolutionlawsformulti-time wave functions and leads us to certain types of laws that can be expressed in strikinglysimpleequations—aswouldseemverysuitableforfundamentalphysical laws.Sotheconceptofmulti-timewavefunctionsturnsouttoberatherdeep,anda powerful tool in the study of relativistic quantum dynamics (and some other applications as well). Theconceptwasconsideredalreadyintheearlydaysofquantummechanics,in fact, since 1929 by illustrious physicists such as Eddington [15], Gaunt [16], Mott [39], and, in particular, Dirac [8]. Surprisingly, the multi-time formalism was not studied comprehensively for many years. Much work on these wave functions, on the mathematically non-trivial consistency question of their evolution equations, andonwaysofimplementinginteractionforthemisratherrecent.Itisparticularly this recent work that we aim at presenting here in the first book devoted to multi-time wave functions. This book has originated from lectures at a spring school on multi-time wave functions that took place in Tübingen, Germany, on April 10–12, 2019. The lec- tures are intended for master-level students, doctoral students, and advanced undergraduates;inaddition, they may also behelpfultoresearchers lookingfor an overview of the topic. As prerequisites, the lectures assume familiarity with basic notions of quantum mechanics and relativity. While in some places some supple- mentary material has been added, the chapters in this book retain the concise style of the lectures. We have included a number of exercises that were given to the v vi Preface participants at the spring school, and which may aid the reader’s self-study. Each chapterinthisbooktreatsoneofthelecturesinthespringschool,andthechapters were mainly written by the corresponding presenters, i.e., Chaps. 1 and 6 by Roderich Tumulka, Chaps. 2 and 4 by Sören Petrat, and Chaps. 3, 5, and 7 by Matthias Lienert. We hope that this little volume will open a door for many a reader to an intriguing topic that is an active field of current research. Tübingen, Germany Matthias Lienert August 2020 Sören Petrat Roderich Tumulka Contents 1 Introduction and Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Relativistic Space-Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Dirac Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 What is a Multi-time Wave Function? . . . . . . . . . . . . . . . . . . . . . 5 1.4 Multi-time Schrödinger Equations . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 Consistency Conditions and Interaction Potentials . . . . . . . . . . . . . . 17 2.1 Rigorous Formulations of Consistency Conditions . . . . . . . . . . . . 17 2.2 Interaction Potentials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3 Short Range Interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 Relativistic Point Interactions in 1+1 Dimensions . . . . . . . . . . . . . . . 31 3.1 Setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2 Definition of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3 General Solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.4 Boundary Conditions from Local Probability Conservation . . . . . . 34 3.5 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.6 Lorentz Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.7 Upshot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4 Multi-time Quantum Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.1 Fock Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2 Emission–Absorption Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.3 Multi-time Emission–Absorption Model. . . . . . . . . . . . . . . . . . . . 45 4.4 Pair Creation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.5 Heisenberg Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.6 Tomonaga-Schwinger Approach . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 vii viii Contents 5 Interior-Boundary Conditions for Multi-time Wave Functions. . . . . 55 5.1 What is an IBC?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2 Setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.3 Derivation of the IBC from Local Probability Conservation . . . . . 56 5.4 Relation to Creation and Annihilation Operators. . . . . . . . . . . . . . 57 5.5 Sketch of How to Construct the Solution of the Model. . . . . . . . . 58 5.6 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6 Born’s Rule for Arbitrary Cauchy Surfaces . . . . . . . . . . . . . . . . . . . 61 6.1 The Curved Born Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.2 Some Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.3 Hypersurface Evolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.4 Interaction Locality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.5 Propagation Locality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7 Multi-time Integral Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 7.2 Derivation of a Suitable Integral Equation . . . . . . . . . . . . . . . . . . 71 7.3 How to Understand the Time Evolution. . . . . . . . . . . . . . . . . . . . 73 7.4 Non-relativistic Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.5 Action-at-a-Distance Form of the Multi-time Equations. . . . . . . . . 74 7.6 Mathematical Analysis of the Integral Equation . . . . . . . . . . . . . . 76 7.7 Idea of the Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.8 On the Cauchy Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7.10 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Conclusion.... .... .... .... ..... .... .... .... .... .... ..... .... 81 References.... .... .... .... ..... .... .... .... .... .... ..... .... 83 Index .... .... .... .... .... ..... .... .... .... .... .... ..... .... 87 Chapter 1 Introduction and Overview Inthischapter,weintroducetheconceptofamulti-timewavefunctionandrelated basicnotionsandexamples. 1.1 RelativisticSpace-Time Webeginbyintroducingsomenotation.LetM =R4beMinkowskispace-timewith pointsx = xμ =(x0,x)=(ct,x).Henceforthwesetc=1.Themetricis ⎛ ⎞ 1 gμν =ημν =⎜⎜⎝ −1 −1 ⎟⎟⎠, (1.1) −1 see Fig. 1.1. A 4-vector xμ is called causal if it is timelike or lightlike (i.e., non- spacelike, or xμx ≥0). We follow the convention that the set future(x) contains μ alsothefuturelightconeofx andx itself.Foraset A⊆M,onewrites (cid:8) future(A)= future(x), (1.2) x∈A likewiseforthepast. TheLorentzgroupL = O(1,3)isthesetofallLorentztransformationsincluding rotationsinspace,whichformtherotationgroupSO(3).TherestrictedLorentzgroup orproperLorentzgroupL+ ⊂L containsthosetransformationsthatdonotreverse eithertimeorspace.ThesymmetrygroupofMinkowskispace-timeisthePoincaré group (cid:9) (cid:10) P = x (cid:6)→a+(cid:2)x : a∈M,(cid:2)∈L , (1.3) whichincludesspace-timetranslations;correspondingly,onedefinesP+. ©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2020 1 M.Lienertetal.,Multi-timeWaveFunctions, SpringerBriefsinPhysics,https://doi.org/10.1007/978-3-030-60691-6_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.