ebook img

Multi-task Image Classification via Collaborative, Hierarchical Spike-and-Slab Priors PDF

0.26 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multi-task Image Classification via Collaborative, Hierarchical Spike-and-Slab Priors

MULTI-TASKIMAGECLASSIFICATIONVIACOLLABORATIVE,HIERARCHICAL SPIKE-AND-SLABPRIORS HojjatS.Mousavi,U.Srinivas,V.Monga YuanmingSuo,M.Dao,T.D.Tran Dept. ofElectricalEngineering Dept. ofElectricalandComputerEngineering ThePennsylvaniaStateUniversity TheJohnsHopkinsUniversity 5 1 ABSTRACT Motivation and Contribution: Advances in sensing tech- 0 nology have facilitated the easy acquisition of multiple dif- 2 Promisingresultshavebeenachievedinimageclassification ferent measurements of the same underlying physical phe- problems by exploiting the discriminative power of sparse n nomena. Often there is complimentary information embed- a representationsforclassification(SRC).Recently,ithasbeen ded in these different measurements which can be exploited J shown that the use of class-specific spike-and-slab priors in forimprovedperformance. Forexample, infacerecognition 0 conjunction with the class-specific dictionaries from SRC is oractionrecognitionwecouldhavedifferentviewsofaper- 3 particularly effective in low training scenarios. As a logi- son’sfacecapturedunderdifferentilluminationconditionsor cal extension, we build on this framework for multitask sce- ] with different facial postures [2,12–15]. In automatic target V narios, wherein multiple representations of the same physi- recognition, multiple SAR (synthetic aperture radar) views calphenomenaareavailable. Weexperimentallydemonstrate C are acquired [16]. The use of complimentary information thebenefitsofminingjointinformationfromdifferentcamera . from different color image channels in medical imaging has s viewsformulti-viewfacerecognition. c been demonstrated in [17]. In border security applications, [ Index Terms— Image analysis, sparse representation, multi-modalsensordatasuchasvoicesensormeasurements, 1 structuredpriors,spike-and-slab,facerecognition. infraredimagesandseismicmeasurementsarefused[18]for v activity classification tasks. The prevalence of such a rich 7 variety of applications where multi-sensor information man- 6 1. INTRODUCTION ifests in different ways is a key motivation for our contri- 8 bution in this paper. Specifically, we extend recent work in 7 Image classification is an important problem that has been 0 class-specific sparse prior-based classification by Srinivas et studied for over three decades. Practical applications span a . al.[19]toamultitaskframework. 1 wide variety of areas such as general texture or object cate- 0 WeextendtheBayesianframeworkin[19]inahierarchi- gorization[1,2],facerecognition[3,4]andautomatictarget 5 calmannerinordertocapturejointinformationacrossmulti- recognitioninhyperspectralorradarimagery[5,6]. Various 1 pletasks(ormeasurements). Asobservedin[19],animpor- : methodsoffeatureextraction([7,8]forexample)aswellas v tantchallengeistodevelopaframeworkbasedonspike-and- classifiers[1,9]havebeeninvestigated. i slabpriorsthatcancaptureageneralnotionofsignalsparsity X The advent of of compressive sensing (CS) [10] has in- while also leading to tractable optimization problems. Our r spired research in the direction of applying the central ana- a contribution successfully addresses both these issues via a lytical formulation of CS to classification problems. Sparse generalizedcollaborativeBayesianhierarchicalmethod. Ex- representation-basedclassification(SRC)[11]isarguablythe pectedlyitresultsinahardnon-convexoptimizationproblem. mostwell-knownsuchtoolthathasdemonstratedrobustper- We propose an efficient solution using Monte Carlo Markov formance even in the presence of high pixel distortion, oc- Chain(MCMC)methodwhichresultsinpracticalbenefitsas clusion or noise. Extensions of SRC have been proposed demonstratedinSection4. alongtwolinesofthought: (i)byaddingregularizerandpri- orswhichpreventoverfittingissuebyintroducingadditional informationtotheproblemand(ii)byexploitingjointinfor- 2. SPARSEREPRESENTATION-BASED mation and complementary data in multitask cases. We are CLASSIFICATION(SRC) alsomovingalongthisdirectiontousetheadvantagesofus- ingpriorsaswellasjointinformation. TheaimofCSisessentiallytorecoverahigherdimensional compressible (sparse) signal xxx∈Rn from a set of lower di- Copyright (cid:13)c2010 IEEE. Personal use of this material is permitted. mensionallinearmeasurementsyyy∈Rmoftheformyyy=AAAxxx. It However,permissiontousethismaterialforanyotherpurposesmustbeob- [email protected]. isshownthatxxxisrecoverablebysolvingthefollowingunder- determined(m(cid:28)n)optimizationproblem[20]: min ||xxx|| subjectto yyy=AAAxxx, (1) 0 xxx where||xxx|| isbasicallythenumberofnon-zeroelementsofxxx. 0 Itisknownthat(1)isanNP-hardproblembutcanbesolved Fig.1. Row,blockanddynamicsparsityfromlefttoright. byrelaxingthenon-convexterm[21]andsolvethefollowing optimizationprobleminpresenceofnoise. well-suitedstructuredpriorforcapturingsparsity[25–27]. δ min ||xxx|| subjectto ||yyy−AAAxxx|| <ε. (2) 0 1 2 xxx is a point mass concentrated at zero (known as ”spike”) and the other term is the distribution of nonzero coefficients of Recently, Wrightetal. proposedSRC[11]forfacerecogni- sparsevectoralsoknownas”slab”. Inthisframeworkγ’sare tion by designing an over-complete class-specific dictionary i assumedtohavebinaryvalues,either1(ifx =1)orzero(if AAAandemployingCSframework. Foramulti-classproblem, i x (cid:54)=0)inwhichcasetheybecomeindicatorvariablesforeach the dictionary matrix AAA is built using training images from i elementofxxx. Itisclearthatγγγcancontrolthesparsitylevelof allclassesasAAA=[AAA ... AAA ]whereeachcolumnofAAA isa 1 C Cr the signal and at the same time enforce a specific structure. vectorizedtrainingimage(dictionaryatom)fromclassC . r Asaresult, κ, whichistheprobabilityofeachcoefficientto The minimization problem in (2) is equivalent to maxi- be nonzero, plays a key role in identifying the structure. In mizing probability of observing the sparse vector xxx given yyy the next section, we will show how a smart choice of κ can assumingxxx has an i.i.d Laplacian distribution in a Bayesian leadtoaframeworkthatismoregeneralandabletocapture framework [22]. Therefore, sparsity can be interpreted as a differentsparsestructuresinthecoefficientvector. prioronthecoefficientvectorwhichenhancessignalcompre- hension by incorporating contextual information and signal structure. Structureandsparsitybothcanbeenforcedbyin- troducingprobabilisticpriors, f(xxx), onthecoefficientvector 3. MULTI-TASKIMAGECLASSIFICATIONVIA andsolvingthefollowingoptimizationproblem[23]: COLLABORATIVE,HIERARCHICAL SPIKE-AND-SLABPRIORS maxf(xxx) subjectto ||yyy−AAAxxx|| <ε. (3) 2 xxx 3.1. BayesianFramework Recently, Srinivas et al. proposed the use of spike-and-slab priors under a Bayesian framework for image classification Iftherearemultiplemeasurementsyyy ,...,yyy ofthesamesig- 111 TTT purposes [19]. They proposed one class-conditional proba- nal,wenowhaveasparsecoefficientmatrixXXX asfollows: bilitydistributionfunction(pdf)perclassrepresentedby f C1 and f with the same class-specific dictionaryAAA as before. YYY :=[yyy ... yyy ]=AAA[xxx ... xxx ]=AAAXXX. (9) C2 111 TTT 1 T Givenatestvectoryyyclassassignmentisdonebysolvingthe following constrained likelihood maximization problem per Dependingontheapplicationandtypeofmeasurement, dif- classwhere f ’sarelearnedseparatelyusingspike-and-slab ferentnotionsofmatrixsparsitycanoccurwithrespecttothe Cr priors: coefficientmatrixXXX. AsillustratedinFig. 1, insomeappli- cationssuchashyperspectralclassification,rowsparsity-en- xxxˆCr =argmxxxaxfCr(xxx) subjectto ||yyy−AAAxxx||2<ε. (4) tire rows with all zero or all non-zero coefficients - emerges naturally in matrix XXX, whereas in other applications, block Class(yyy)=arg max fCr(xxxˆCr) (5) sparsityorjointdynamicsparsityaremoreappropriate. This r∈{1,2} sparsity pattern is an inherent feature of the application and Inspired by [24] they developed a Bayesian framework for the specific way in which the multi-task dictionary has been classificationandconsideredalinearmodelyyy=AAAxxx+nnnineach designed. Ourcontributionisaframeworkthatisapplicable class whereyyy∈Rm,xxx∈Rn,AAA∈Rm×n andnnn is the inherent inawidevarietyofapplicationsbycapturingageneralnotion Gaussiannoise(wedroptheclassindicesfornotationalsim- ofthesparsestructureinthecoefficientmatrix. plicity).Usingthisset-uptheunderlyingBayesianframework Assume we have T observations (tasks) from the same isasfollows: class and put them together to form a matrixYYY. We desire yyy|AAA,xxx,γγγ,σ2 ∼ N(AAAxxx,σ2III) (6) to find a sparse matrix XXX such that we can guarantee that xi|σ2,γi,λ ∼ γiN(0,σ2λ−1)+(1−γi)δ0, i=1,...,n (7) theerrorbetweentestmatrixanditsreconstructedversionis smallandatthesametime,matrixXXX hasasparsestructure. γi|κ ∼ Bernoulli(κ), i=1,...,n. (8) We modified (6)-(8) in order to generalize the Bayesian where N(.) represents the normal distribution and (7) is framework to multitask case. This modified version should modelingeachx withaspike-and-slabpriorwhichisavery be able to model the behaviour ofXXX and induce the desired i structureandsparsityinXXX. GeneralizedBayesianframework 3.2. SolutiontoOptimizationProblem formultitaskcaseisasfollows: Inthissectionweprovideanefficientsolutiontotheresulting optimization problem in (13). First, we rewrite the problem YYY|AAA,XXX,ΓΓΓ,σ2n ∼ ∏T N (cid:16)AAAxxxt,σ2nIII(cid:17) (10) asfollows: t=1 T (cid:18)σ2 n (cid:19) T n argmin ∑ ||yyy −AAAxxx||2+λ||xxx||2+∑γ ρ (15) XXX|σ2,ΓΓΓ,λ ∼ ∏∏ γtiN(0,σ2λ−1)+(1−γti)δ0 (11) XXX,ΓΓΓ t=1 σ2n t t 2 t 2 i=1 ti ti t=1i=1 T n As it can be seen, it consists of T different independent op- ΓΓΓ|KKK ∼ ∏∏ Bernoulli(κti). (12) timization problems which can be solved individually rather t=1i=1 thansolvingacomplexmatrixoptimizationproblem. Hence- forth, for each class we should follow the following proce- Wherexxx is thetth column of the matrixXXX,KKK ={κ } and t ti t,i dure: ΓΓΓ={γ } fort=1...T andi=1...n Rκeismaasrstiku:mt,Niedotteothtaakteindcioffnetrreanstttvoal(u8e)sasfowraesapchrotpaosskedanidn[e1a9c]h, • minxxxitm,γγγtize σσ2n2||yyyt−AAAxxxt||22+λ||xxxt||22+∑ni=1γtiρti,∀t • Putxxx’sandγγγ’stogethertoformXXX andΓΓΓ,respectively. t t coefficient. Withthisassumptionourframeworkcancapture Fromnowonwardweonlytalkabouttheoptimizationprob- more general notions of structure and sparsity in the matrix lem in classC and taskt. However, it should be solved for XXX. This is one of our central analytical contributions in this r each C , r =1,...,C and t, t =1,...,T, separately. For the paper, in contrast with methods with relaxed and simplified r sakeofsimplicity,wedropclassandtaskindicesanduseyyy,xxx assumptions[19,28]. andγγγinsteadofyyy,xxx andγγγ,respectively. t t t The benefit of using the Bayesian approach is that it can Note that the above optimization problem is a hard non- alleviate the burden on requirement of abundant training. convex problem. We propose an efficient solution using One of the central assumptions in SRC is existence of suffi- MCMC method. One of the advantages of introducing a cienttraining(overcompletedictionaryAAA)whereasproposed hierarchical model in (10)-(12) is that we can obtain the Bayesianapproachcanhandlescenariosthatlackthenumber marginaldistribution f(γγγ|yyy)∝ f(yyy|γγγ)f(γγγ). Accordingto[26], oftraining. Thisisenabledbyuseofclass-specificpriorsthat f(γγγ|yyy)providesaposteriorprobabilitythatcanbeusedtose- canoffermorediscriminabilityinthedictionary. lectpromisingatomsthatcontributemoreinreconstructingyyy. To perform the Bayesian inference we followed a simi- Moreover,findingtheoptimumγγγ∗isalsoequivalenttofinding lar procedure as in [19] to obtain the joint posterior density the most prominent atoms in the dictionary AAA. Henceforth, function for MAP estimation. Here we only present the re- we propose the following scheme to solve the optimization sulting optimization problem; the detailed discussion of the problem: first, we find dictionary atoms that contribute in optimizationproblemisavailableonlineinatechnicalreport reconstructing the test vector yyy. Then we find the value of at[29]. Itmustbenotedthatwehaveadifferentframework contributionforeachatomwefoundpreviously. foreachclassandasaresult,wegetCdifferentoptimization We use MCMC method to extract the promising atoms (see problemstofindXXXC∗r andΓΓΓC∗r: Algorithm1). Accordingto[26]aMarkovChainofγγγ(j)’sas in(18)obtainedbyGibbssamplingconvergesindistribution σ2 T n to f(γγγ|yyy). ThissequencecanbeobtainedbyAlgorithm1and argmXXX,iΓΓΓn σ2n||YYY−AAAXXX||2F+λ||XXX||2F+t∑=1i∑=1γtiρti (13) tphroosmeinweintht ahtiogmhessitnatphpeeadriacnticoenafrryeqAAAuetnhcayt ccaonrrebsepounsdedtofotrhea betterreconstruction. Detailsofsamplingfromdistributions where ρ =σ2log(cid:0)2πσ2(1−κti)2(cid:1). First term in (13) is basi- inAlgorithm1canbefoundin[29]. ti λκt2i After performing Gibbs sampling, prominent dictionary callytryingtominimizethereconstructionerror,whereasthe atomsforreconstructionarerevealed,thenwefindtheexact second and third terms are jointly trying to keep the coeffi- contribution of each dictionary atom by solving the follow- cientmatrixsmoothandsparse. ingconvexoptimizationproblemonthepromisingsubsetof Remark: Solutiontothisoptimizationproblemhasnotbeen dictatoryatoms. addressed yet in the literature but its relaxations reduce to well-known problems in compressive sensing and statistics σ2 sFuinchallays,LafAteSrSsOol,vEinlagsteiaccNheotp,teitmci[z2a8ti,o3n0,p3r1o]b.lemperclassfor xxxγγ∗γ =argmxxxγiγγnσ2n||yyy−AAAγγγxxxγγγ||22+λ||xxxγγγ||22 (16) agiventestmatrixYYY,theclassassignmentwillbeasfollows. whereAAA is the new dictionary consisting of only contribut- γγγ ing atoms andxxx is the corresponding coefficient vector for γγγ Class(YYY) = arg min L (XXX∗ ;ΓΓΓ∗ ) (14) the reduced problem. Afterward, we place the exact contri- r∈{1,...,C} r Cr Cr bution value of each dictionary element intoxxx based on the Algorithm1MICHS(perclass,pertask) Table1. RecognitionrateforC=129classes Input: AAA,κκκ,yyy t View(T) MSM Graph SRC JSRC JDSRC MICHS (1)Findcontributingatoms: Findsequenceofγγγandxxx 1 36.5 44.5 45.0 45.0 45.0 51.3 xxx(1), γγγ(1), xxx(2), γγγ(2), xxx(3), γγγ(3), ... (17) 3 48.9 63.4 59.5 53.6 72.0 73.0 Initialization: Iterationcounter j=1,γγγ(0)=(1,...,1) andxxx(0)tobetheleastsquareestimate. applying MICHS to this problem and compare the results while j<MaxIter do withstate-of-the-artalgorithms. (1)Samplexxx(j)from f(xxx(j)|yyy,γγγ(j−1)) CMU Multi-PIE database: We conducted the experiments (2)Sampleithelementofγγγ(j)denotedbyγ(ij)from on the CMU Multi-PIE face database [13] which contains f(γ(j)|yyy,xxx(j),γγγ(j))fori=1...n a large number of facial images under different illumi- i (i) (j) (j) (j) (j−1) (j−1) nations, view points and expressions up to four sessions. whereγγγ =(γ ,...,γ ,γ ,...,γ ), (i) 1 i−1 i+1 n There is a collection of cameras at different view angles endwhile (θ = {0◦,±15◦,±30◦,±45◦,±60◦,±75◦,±90◦}) that cap- Extractsequenceofγγγfrom(17): turesthesamescene. Amongalltheavailableindividuals,we γγγ(1) , γγγ(2) , γγγ(3), ... (18) pickedC=129 subjects that are present in all four sessions of acquisition. Illustration of multiple camera configuration Takethemostfrequentγ sin(18)andformγγγ∗ aswellassampleimagescanbefoundinFig2. i (2)Findvaluesofcontributionby(16) Wefollowtheproceduredescribedin[12]forconductingthe (3)InsertValuesinxxx∗basedonγγγ∗ experiments and build our training dictionary AAA by picking Output: γγγ∗,xxx∗ training images from session 1 using a subset of available views, i.e. θ ={0◦,±30◦,±60◦,±90◦}. Testimagesare train obtained from all available view angles and from session 2. This is a more realistic scenario that not all the testing poses are available in the dictionary. To generate a test ma- trix with T views we randomly pick one theC subjects and again randomly pick T different views of that person from θ. We generated two thousand such test samples and com- paredMICHS1 performancewithclassicalMutualSubspace Method (MSM) [4], Graph-based method in [32], SRC [11] combined with majority voting, JSRC method in [33] and finallywithJDSRC[12]. To show the effectiveness of our algorithm, first we com- pared the results for T =1 (single task scenario) and then weshowedtheresultswherewehaveT =3differentviews. Fig.2. Imageacquisitionconfigurationandsampleimages TheseresultsareshowninTable1andourmethodisgiving thebestperformanceamongallalgorithmsinbothcases. Fig 3 illustrates the results for a scenario with reduced number indicatorvariableγγγ. of classes where we only consider 30 classes out 129 sub- Bydoingthesameprocedureforeachtaskandputtingthere- jects. WecomparedourresultwithJDSRCwhichwasshown sultingxxxandγγγvectorstogether,weformXXXC∗r andΓΓΓC∗r matrices to be second best after us. We argued in section 3 that by forclassCr. Finally,weshoulddothewholeprocessagainin using class specific priors we can expect to have less sensi- eachclassandobtainthecorresponding(XXXC∗r,ΓΓΓC∗r)anddothe tivity (slower decay) to insufficiency of number of training classification based on the value of cost function or residual samples. This is verified in Fig. 3 with reduced number of aswaspresentedin(14). TrainingPerClass(TPC=3,5,7). 4. EXPERIMENTALRESULTS 5. REFERENCES Multiview face recognition is a multi task image classifica- [1] H.Zhang, A.Berg, M.Maire, andJ.Malik, “Svm-knn: Dis- criminativenearestneighborclassificationforvisualcategory tionproblemofsignificantimportanceandZhangetal. have recognition,” in Computer Vision and Pattern Recognition, done a thorough investigation on this problem in [12]. In 2006IEEEComputerSocietyConferenceon,vol.2,2006,pp. order to validate the performance of our proposed Multitask 2126–2136. ImageClassificationviacollaborativeHierarchicalSpikeand 1Tobenefitfromprobabilisticnatureoftheframeworkasimpleandintu- slab priors (MICHS), we present the experimental results of itivewayofchoosingKKKmatrixperclasscanbefoundin[29] [16] H.Zhang,N.M.Nasrabadi,Y.Zhang,andT.S.Huang,“Multi- viewautomatictargetrecognitionusingjointsparserepresen- tation,”IEEETrans.Aerosp.Electron.Syst.,vol.48,no.3,pp. 2481–2497,July2012. [17] U.Srinivas,etal.,“SHIRC:AsimultaneousSparsitymodelfor HistopathologicalImageRepresentationandClassification,”in Proc.IEEEInt.Symp.Biomed.Imag.,2013,pp.1118–1121. Fig.3. Recognitionratesinlowtrainingscenario.C=30individu- [18] N.Nguyen, N.Nasrabadi, andT.Tran, “Robustmulti-sensor als.Numbersarehigherbecausewereducedthenumberofclasses. classification via joint sparse representation,” in Information Fusion(FUSION),2011Proceedingsofthe14thInternational Conferenceon,July2011,pp.1–8. [2] X.-T.Yuan,X.Liu,andS.Yan,“Visualclassificationwithmul- [19] U.Srinivas, Y.Suo, M.Dao, V.Monga, andT.Tran, “Struc- titaskjointsparserepresentation,”IEEETrans.ImageProcess- turedsparsepriorsforimageclassification,”InternationalCon- ing,vol.21,no.10,pp.4349–4360,Oct.2012. ferenceonImageProccessing,2013. [3] J. Zou, Q. Ji, and G. Nagy, “A comparative study of local [20] E.Cande`s,J.Romberg,andT.Tao,“Robustuncertaintyprin- matching approach for face recognition,” IEEE Trans. Image ciples:Exactsignalreconstructionfromhighlyincompletefre- Processing,vol.16,no.10,pp.2617–2628,2007. quencyinformation,”vol.52,no.2,pp.489–509,Feb.2006. [4] K. Fukui and O. Yamaguchi, “Face recognition using multi- [21] D.L.Donoho,“Formostlargeunderdeterminedsystemsoflin- viewpointpatternsforrobotvision,”inRoboticsResearch,ser. earequationstheminimall -normsolutionisalsothesparsest 1 Springer Tracts in Advanced Robotics, vol. 15. Springer solution,” Comm. Pure Appl. Math., vol. 59, no. 6, pp. 797– Berlin/Heidelberg,2005,pp.192–201. 829,2006. [5] H. Ren and C.-I. Chang, “Automatic spectral target recogni- [22] S.Babacan, R.Molina, andA.Katsaggelos, “Bayesiancom- tioninhyperspectralimagery,”AerospaceandElectronicSys- pressivesensingusinglaplacepriors,”ImageProcessing,IEEE tems,IEEETransactionson,vol.39,no.4,pp.1232–1249,Oct Transactionson,vol.19,no.1,pp.53–63,2010. 2003. [23] V.Cevher,“Learningwithcompressiblepriors.”inNIPS,2009, [6] Q.ZhaoandJ.Principe,“Supportvectormachinesforsarau- pp.261–269. tomatictargetrecognition,”AerospaceandElectronicSystems, IEEETransactionson,vol.37,no.2,pp.643–654,Apr2001. [24] T.-J.Yen, “Amajorizationminimizationapproachtovariable selectionusingspikeandslabpriors,”TheAnnalsofStatistics, [7] R.M.Haralick,K.Shanmugam,andI.Dinstein,“Texturalfea- vol.39,no.3,pp.1748–1775,062011. tures for image classification,” IEEE Trans. Syst., Man, Cy- bern.,vol.SMC-3,no.6,pp.610–621,1973. [25] H.IshwaranandJ.S.Rao,“Spikeandslabvariableselection: frequentist and bayesian strategies,” The Annals of Statistics, [8] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of fea- pp.463–976,2005. tures: Spatialpyramidmatchingforrecognizingnaturalscene [26] E. I. George and R. E. McCulloch, “Variable selection via categories,”inComputerVisionandPatternRecognition,2006 gibbs sampling,” Journal of the American Statistical Associ- IEEEComputerSocietyConferenceon,vol.2,2006,pp.2169– ation,vol.88,no.423,pp.881–889,1993. 2178. [27] M.K.TitsiasandM.La´zaro-Gredilla, “Spikeandslabvaria- [9] T. Randen and J. Husoy, “Filtering for texture classification: tionalinferenceformulti-taskandmultiplekernellearning,”in a comparative study,” Pattern Analysis and Machine Intelli- NIPS,2011,pp.2339–2347. gence,IEEETransactionson,vol.21,no.4,pp.291–310,Apr 1999. [28] Y.Suo,M.Dao,T.Tran,U.Srinivas,andV.Monga,“Hierar- chicalsparsemodelingusingspikeandslabpriors,”inAcous- [10] D.Donoho,“Compressedsensing,”InformationTheory,IEEE tics, SpeechandSignalProcessing(ICASSP),2013IEEEIn- Transactionson,vol.52,no.4,pp.1289–1306,April2006. ternationalConferenceon,May2013,pp.3103–3107. [11] J.Wright,A.Y.Yang,A.Ganesh,S.Sastry,andY.Ma,“Ro- [29] H. S. Mousavi, et al., “Collaborative hierarchical sparse rep- bust face recognition via sparse representation,” IEEE Trans. resentation for classification,” Pennsylvania State University, PatternAnal.MachineIntell.,vol.31,no.2,pp.210–227,Feb. Tech. Rep. PSU-JHU-EE-TR-201301, Nov. 2013. [Online]. 2009. Available:www.personal.psu.edu/hus160/TechRep.pdf [12] H.Zhang,N.M.Nasrabadi,Y.Zhang,andT.S.Huang,“Joint [30] R. Tibshirani, “Regression shrinkage and selection via the dynamic sparse representation for multi-view face recogni- lasso,” Journal of the Royal Statistical Society, Series B, tion,” Pattern Recognition, vol. 45, no. 4, pp. 1290 – 1298, vol.58,pp.267–288,1994. 2012. [31] P.Sprechmann,I.Ramirez,G.Sapiro,andY.Eldar,“C-hilasso: [13] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker, Acollaborativehierarchicalsparsemodelingframework,”Sig- “Multi-pie,” Image Vision Comput., vol. 28, no. 5, pp. 807– nalProcessing,IEEETransactionson,vol.59,no.9,pp.4183– 813,May2010. 4198,Sept2011. [14] T.GuhaandR.K.Ward,“Learningsparserepresentationsfor [32] E.KokiopoulouandP.Frossard,“Graph-basedclassificationof humanactionrecognition,”PatternAnalysisandMachineIn- multipleobservationsets,”PatternRecognition,vol.43,no.12, telligence, IEEE Transactions on, vol. 34, no. 8, pp. 1576– pp.3988–3997,2010. 1588,2012. [33] J.A.Tropp,A.C.Gilbert,andM.J.Strauss,“Algorithmsfor [15] S.Bahrampour,A.Ray,N.M.Nasrabadi,andK.W.Jenkins, simultaneous sparse approximation. Part I: Greedy pursuit,” “Quality-basedmultimodalclassificationusingtree-structured SignalProcessing,vol.86,pp.572–588,Apr.2006. sparsity,”arXivpreprintarXiv:1403.1902,2014.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.