Multi-stagequantumabsorptionheatpumps Luis A. Correa1,2,3,∗ 1SchoolofMathematicalSciences,TheUniversityofNottingham,UniversityPark,NottinghamNG72RD,UK 2IUdEAInstitutoUniversitariodeEstudiosAvanzados, UniversidaddeLaLaguna, 38203Spain 3Dpto. F´ısicaFundamental,Experimental,Electro´nicaySistemas,UniversidaddeLaLaguna,38203Spain (Dated:January17,2014) Itiswellknownthatheatpumps,whilebeingalllimitedbythesamebasicthermodynamiclaws,mayfind realizationonsystemsas‘small’and‘quantum’asathree-levelmaser.Inordertoquantitativelyassesshowthe performanceofthesedevicesscaleswiththeirsize,wedesigngeneralizedN-dimensionalidealheatpumpsby mergingN−2elementarythree-levelstages. Wesetthemtooperateintheabsorptionchillermodebetween givenhotandcoldbaths,andstudytheirmaximumachievablecoolingpowerandthecorrespondingefficiencyas afunctionofN. Whiletheefficiencyatmaximumpowerisroughlysize-independent,thepoweritselfslightly increases with the dimension, quickly saturating to a constant. Thus, interestingly, scaling up autonomous 4 quantumheatpumpsdoesnotrenderasignificantenhancementbeyondtheoptimaldouble-stageconfiguration. 1 0 PACSnumbers:03.65.-w,03.65.Yz,05.70.Ln,03.67.-a 2 n a I. INTRODUCTION becauseoftheirinherentsimplicity,thatallowstogaininsight J intotheemergenceofthelawsofthermodynamicsfromindi- 6 Anabsorptionheatpumpisamulti-purposethermaldevice vidualopenquantumsystems[33]. 1 inwhichthedrivingforceismostlyheat,ratherthanmechan- Inmanypracticalsituations,absorptionchillersmightalso icalwork[1]. ThefirstdesignthereofwaspatentedbyFerdi- be a preferable alternative to power-driven quantum devices. ] h nand Carre´ in 1860 and played a prominent role in the early Nonetheless, as in the classical case, these are usually much p development of refrigerators. Anecdotally, in 1927, Albert lessefficientandpowerfulthanthebestreversedheatengines - Einstein and Leo´ Szila´rd presented an absorption fridge run- [34], which turns the optimization of their performance into t n ningsolelyonheat,thatoperatedatnearlyconstantpressure, amatterofparamountimportance. Somestepshavebeenal- a requiringnomovingparts[2]. Inspiteoftheobviousadvan- ready undertaken in this direction, by identifying the upper u tages of absorption technologies in terms of safety, reduced bounds on a suitable figure of merit for the cooling perfor- q environmentalimpactorbetterexploitationofthefreelyavail- mance, and the design prescriptions for their saturation [35], [ able thermal resources, mechanical compression cycles are andbyproposingreservoirengineeringtechniques[36,37]in 1 preferredformostindustrialandcommercialapplications,as ordertopushthoseboundsfurther[34]. v theseareusuallymuchmoreefficient. Consequently,consid- Notwithstanding the important differences between clas- 1 erable effort has been devoted over the last decades to im- sical and quantum absorption heat pumps, it is most natu- 1 0 provetheperformanceofabsorptionheatpumps[3]inorder ral to ask whether significant enhancement can be expected 4 tomakethemcompetewiththeirpower-drivenanalogues.For fromscalingupquantumthermodynamiccyclesinto“larger” . instance,onecouldthinkofscalingupabsorptionsystemsinto multi-stage networks. In order to quantitatively assess the 1 largermulti-stageconfigurationscapableofreusingtheresid- sizescalingontheperformanceofheatpumps,weconstruc- 0 4 ualoutputheatforfurthercooling,thusboostingtheiroverall tively build generalized N-level ideal absorption devices by 1 performance[4–7]. couplingtogetherN−2elementarythree-levelcycles,some- : Itwasalreadyacknowledgedinthelate1950sthatathree what in the spirit of parallel multi-stage classical absorption v i levelmaserselectivelycoupledtotwoheatbathsandacoher- devices [1]. We then compute the efficiency at maximum X ent driving field, is a valid embodiment for a quantum heat cooling power and the maximum power itself as a function r engine [8–10], which running in reverse ultimately amounts of N for 3 ≤ N ≤ 10. While the efficiency proves to be a to a power-driven fridge. Ever since, quantum heat engines roughly size-independent, the corresponding power only in- andrefrigeratorshavebeenobjectofextensivestudy[11–20], creases mildly with the number of stages, quickly saturating including detailed experimental proposals [21, 22], and the to a constant asymptotic value. Therefore, and again in to- developmentofstrategiestoovercometheirultimatethermo- tal correspondence with the classical scenario, double-stage dynamicslimitations[19,20,23,24]. absorption heat pumps appear as the most reasonable com- On the other hand, a three-level maser operating between promise between simplicity and performance. Interestingly, heat baths only (i.e. without driving) realizes a quantum ab- thiscaseof N = 4happenstocorrespondwiththetwo-qubit sorption heat pump [25], that can function either as a fridge modelrecentlyintroducedin[26],thusmarkingitasatarget or as a ‘heat transformer’. In particular, quantum absorption forexperimentalimplementations. fridges have attracted a lot of attention [20, 26–32], mostly We also carry out an extensive numerical investigation thatsupportsthegeneralvalidityandtightnessofthemodel- independent performance bound established in [34], for all ideal multi-stage absorption refrigerators. Finally, we com- ∗Electronicaddress:[email protected] parethenon-idealeight-levelabsorptionfridgeof[27]withall 2 its ideal counterparts, when operating under the same condi- Notethatthefrequencyoftheworktransition|2(cid:105)↔|3(cid:105)isjust tions. Wefindthatidealfridgeslargelyoutperformnon-ideal ω ≡ ω − ω . We will take Eq. (1) as the defining prop- w h c ones, not only when it comes to their maximum achievable erty of an ideal heat pump. More generally, the asymptotic efficiencybut,especially,intermsoftheirmaximumcooling stationarityofenergy,translatesinto power. This paper is structured as follows: We start by providing Q˙w+Q˙h+Q˙c =0, (2) a brief review of quantum absorption heat pumps in Sec. II. whichholdsforbothidealandnon-idealdevices. Sincethere In Sec. III, we introduce our constructive scheme to build is no work involved in the operation of the pump, Eq. (2) is generalized multi-stage parallel cycles, discuss their micro- just a statement of the first law of thermodynamics. On an- scopicmodelandcorrespondingmasterequation, andobtain other note, and always provided that the dissipation is suffi- the steady-state heat currents flowing across the system. We cientlyweak, thepositivityoftherateofirreversibleentropy shall be then, in Sec. IV, in the position to quantitatively production [38, 39] makes it possible to write down the sec- comparethemaximumcoolingpowerandthecorresponding efficiency of devices with increasing N and fixed input ondlawofthermodynamicsintheform[33] thermal resources. Finally, in Sec. V, we summarize and Q˙ Q˙ Q˙ drawourconclusions. w + h + c ≤0. (3) T T T w h c Eqs.(2)and(3)encodemostoftherelevantinformationabout absorptionheatpumps. Letustakeforinstance,anidealde- II. IDEALQUANTUMABSORPTIONHEATPUMPS vice,assumingthatitworksinthechiller/heatermode,sothat Q˙ ,Q˙ >0andQ˙ <0. Then,combiningEqs.(1)and(3)one c w h Letusconsiderathree-levelsystemwithHamiltonianHˆ = arrivesto 3 (cid:126)ωc|2(cid:105) + (cid:126)ωh|3(cid:105) in its energy eigenbasis {|1(cid:105),|2(cid:105),|3(cid:105)}. We (T −T )T shall allow for a very weak dissipative interaction between 0<ωc <ωc,max ≡ (Tw−Th)Tcωh, (4) the transition |1(cid:105) ↔ |2(cid:105) and a ‘cold’ heat bath at tempera- w c h ture Tc. Likewise, we couple the transitions |2(cid:105) ↔ |3(cid:105) and whichdefinesthecoolingwindow,thatis,theregioninparam- |3(cid:105) ↔ |1(cid:105)veryweaklytoahightemperature‘work’reservoir eterspaceinwhichcooling(andheating)ispermittedbythe anda‘hot’bathrespectively, suchthatTw > Th > Tc. Once secondlaw. Forωc,max <ωc <ωh,itistheheat-transforming itsasymptoticstatebuildsup,thissystemoperatesasthemost cycle the one that dominates, thus rendering a quantum ab- fundamental quantum absorption heat pump [25], relying on sorptionheattransformer. the imbalance between the steady-state rates associated with From the cooling point of view, the ratio of the incom- thecoolingcycle|1(cid:105)→−c |2(cid:105) −→w |3(cid:105)→−h |1(cid:105),anditscomplement, ing cold heat Q˙c and the energetic cost Q˙w of its process- h w c ing,definestheefficiencyorcoefficientofperformance(COP) theheat-transformingcycle|1(cid:105)→− |3(cid:105)−→|2(cid:105)→− |1(cid:105). ε≡Q˙ /Q˙ ,whichbenchmarkstheusefuleffectofanabsorp- c w Whentheasymptoticrateofthecoolingcycleexceedsthat tionchiller. CombiningEqs.(2)and(3),onegenerallyfinds oftheheat-transformingcycle, net‘heat’perunittimeisex- tracted from the cold and work reservoirs and dumped into (T −T )T ε≤ w h c ≡ε , (5) the hot bath. That is, net energy is moved between the hot (T −T )T C h c w andcoldbathsagainst thetemperaturegradient, withtheas- sistance of the input heat coming from the work bath. De- that is, that the maximum efficiency allowed is the cor- pendingonthewhethertheusefuleffectissoughtinthecold responding Carnot COP ε [1]. It is easy to see that the C orthehotbath,wespeakofaquantumabsorptionchillerora Carnot efficiency is indeed saturated by an ideal fridge at quantum absorption heater. If on the contrary, the stationary ω → ω , where each transition equilibrates with its c c,max rate of the heat-transforming cycle exceeds that of the cool- localbathandconsequently, allheatcurrentsvanish[10]. In ing cycle, low-quality heat coming from the hot bath would general, for a non-ideal absorption chiller [i.e. a system not be upgraded to high-temperature heat leaking into the work obeying Eq. (1)], Eq. (5) would be a strict inequality [35], bath, only by means of the coupling to the cold bath. These whileEq.(4)wouldceasetohold. arethetwomodesofoperationofbothclassicalandquantum absorptionheatpumps[1]. At the steady state and given that each reservoir interacts locally with its corresponding transition [35], it is intuitively III. GENERALIZEDN-LEVELIDEALHEATPUMPS clearthatallthreeheatcurrents(work,hotandcold)mustflow at the same rate, in order to keep the average energy asymp- An autonomous thermal device based on two non- totically stationary [10, 28], i.e. one must have: Q˙ = ω q, interacting qubits was put forward in Ref. [26], which ulti- α α whereQ˙ standsforthesteady-stateheatcurrentflowingfrom matelyamountstotwoelementarythree-levelcyclessharing α bathα∈{w,h,c}intothesystem. Therefore the work transition. It can be seen that it realizes a parallel double-stageidealheatpumpandthatthepartialheatcurrents (cid:12) (cid:12) (cid:12)(cid:12)Q˙α/Q˙α(cid:48)(cid:12)(cid:12)=ωα/ωα(cid:48). (1) from each stage just add up to the total [34]. The overlap 3 |5 … 2𝜔 |5 ℎ |4 |4 |3 𝜔ℎ + 𝜔𝑐 |4 |3 𝜔 |3 ℎ |3 |2 𝜔 |2 𝑐 |2 0 |1 |1 FIG.1:Ontherighthandside,weshowthedetailofthefirstfivelevelsofageneralizedN-dimensionalidealquantumabsorptionheatpump. Thecoloredarrowsrepresentdissipativeinteractionbetweenthecorrespondingtransitionandoneofthethreeheatreservoirs: Bluestands for the cold bath, orange, for the hot bath, and red, for the high temperature work reservoir. Note that the energy difference between two consecutivelevelskeepsalternatingbetweenωc andωw = ωh−ωc. Ontheleft ha n d𝑻side,wes howthequtritbreakupofa5-levelfridge: It consistsofthreeelementarythree-levelcyclesoperatinginparallel. Thefirstandthesecondsharetheworktransition,whilethesecondand 𝒄 𝝎 thethird,shareacoldtransition. Thenextelementaryblocktobeaddedfora6-levelheatpump,wouldsharetheworktransition|4(cid:105) ↔ |5(cid:105) 𝒄 𝑻 withtheprecedingblock,while|5(cid:105)↔|6(cid:105)and|4(cid:105)↔|6(cid:105)wouldbeconnectedwiththecoldandhotbathsrespectively. 𝒉 𝑻 𝝎 𝒉 betweenthem,however,makestheirindividualcontrib𝝎utions 𝝎HˆS-𝒘B = (cid:80)αΣˆ(αN)⊗𝒘Bˆα,w𝝎here𝒘 𝑻 smallerthanwhatwouldbeexpectablefromtwoindepende𝒉nt three-level heat pumps. Once more, the corres𝒉pondence be- Σˆ(N) =(cid:88)(cid:100)N/2(cid:101)−1|2n(cid:105)(cid:104)2n+1|+|2n+1(cid:105)(cid:104)2n| (7a) tweentheclassicalandthequantumcaseisapparent[1,3,4], w𝑻 n= 1 andthequestionnaturallyarisesaboutthesizescalingofthe 𝝎 Σˆ(N) =(cid:88)𝒄N−2|n(cid:105)(cid:104)n+2|+|n+2(cid:105)(cid:104)n| (7b) coolingpowerQ˙ andtheCOPεofmulti-stagequantumab- 𝒄 h n=1 sorptionrefrigeractors. Doesthesizereallymatterinquantum Σˆ(N) =(cid:88)(cid:98)N/2(cid:99)|2n−1(cid:105)(cid:104)2n|+|2n(cid:105)(cid:104)2n−1|. (7c) c n=1 absorptioncooling? The reservoirs may consist, as usual, of an infinite collec- 𝝎 = 𝝎 − 𝝎 tion of uncoupled harmonic modes in three dimensions. We 𝒘 𝒉 𝒄 choosethebathcouplingoperatorsBˆ tobe α (cid:88) (cid:16) (cid:17) A. Microscopicmodelandmasterequation Bˆ = g bˆ +bˆ† . (8) α αµ αµ αµ µ A generalized N-level ideal heat pump may be built by mergingN−2three-levelsystems,alternativelysharingawork Withbˆαµandbˆ†αµ,wedenotetheannihilationandcreationop- oracoldtransition. InFig.1,thecaseN = 5(triple-stage)is eratorsformodeωµ√inthereservoirα,anddefinethecoupling schematically illustrated (see figure caption for details). The constantsasgαµ ≡ γαωµ,whichyieldsflatspectraldensities (cid:80) totalHamiltonianofsuchN-levelsystemreads (Jα(ω)∝ µg2αµ/ωµ).Thedissipationstrengthsγαarechosen soastodefinethelargestdynamicaltime-scaleintheproblem (cid:98)(cid:88)N/2(cid:99) (cid:100)N(cid:88)/2(cid:101)−1 (cid:40) (cid:126) (cid:41) HˆN = [(n−1)ωh+ωc]|2n(cid:105)+ nωh|2n+1(cid:105), (6) γα−1 ≫ |ωα−ωα(cid:48)|−1,k T . (9) n=1 n=1 B α This allows us to perform the Born-Markov and secular ap- where(cid:98)·(cid:99)and(cid:100)·(cid:101)standforthefloorandceilingfunctions. Let proximations in deriving a master equation for the system usmodelthesystem-bathsinteractionswithatermoftheform [40]. Under the further assumption of a preparation with 4 totally uncorrelated system and equilibrium reservoirs, one Ingeneral,forarbitraryN,onewouldbeleftwith readilyobtains Q˙(N) =ω (cid:88)(cid:100)N/2(cid:101)−1(cid:104)2n+1|L(N)(cid:37)ˆ(∞)|2n+1(cid:105) (15a) d (cid:16) (cid:17) w w n=1 w dt(cid:37)ˆN(t)= L(wN)+L(hN)+L(cN) (cid:37)ˆN(t), (10) Q˙(N) =ω (cid:88)N ((cid:100)n/2(cid:101)−1)(cid:104)n|L(N)(cid:37)ˆ(∞)|n(cid:105) (15b) h h n=3 h where(cid:37)ˆN(t)isthestateofthesystemintheinteractionpicture Q˙(N) =ω (cid:88)(cid:98)N/2(cid:99)(cid:104)2n|L(N)(cid:37)ˆ(∞)|2n(cid:105), (15c) andthedissipatorsL(N)aregivenby c c n=1 w α which provides, together with Eqs. (7) and (11), closed for- (cid:32) (cid:33) L(N)(cid:37)ˆ =Γ σˆ− (cid:37)ˆσˆ+ − 1σˆ+ σˆ− (cid:37)ˆ− 1(cid:37)ˆσˆ+ σˆ− + mulasfortheevaluationofthestationaryheatcurrents. From α α,ωα N,α N,α 2 N,α N,α 2 N,α N,α nowon,weshallfocusonthechilleroperationmode. Atfirst (cid:32) (cid:33) glance,onecouldintuitivelyexpectadifferentscalingofe.g. 1 1 Γα,−ωα σˆ+N,α(cid:37)ˆσˆ−N,α− 2σˆ−N,ασˆ+N,α(cid:37)ˆ− 2(cid:37)ˆσˆ−N,ασˆ+N,α . (11) |Q˙(cN)| for even and odd N: The addition of an even level to the heat pump provides it with an extra cold transition, so Here, the positive decay rates Γ are the diagonal ele- that a new term contributes to the cold current in Eq. (15c) α,ωα while, whentheaddedlevelisodd, thenewcontributionap- ments of the spectral correlation tensor [40], which for a pears instead in the work current of Eq. (15a). It must be three-dimensional free bosonic field in thermal equilibrium are given by Γ ∝ ω3[1 + n (ω)] > 0, with n (ω) = noted, however, that each of the already contributing terms (exp(cid:126)ω/kBTα−α1,ω)α−1. The mutuaαlly adjoint jump opαerators will always decrease as N grows, e.g. |(cid:104)2|L(c3)(cid:37)ˆ3(∞)|2(cid:105)| < σˆ+ =(σˆ− )†arejust |(cid:104)2|L(4)(cid:37)ˆ (∞)|2(cid:105)|whengoingfromEq.(13c)toEq.(14c). N,α N,α c 4 ItcanbeseenbynumericalinspectionofEqs.(15)thatin- σˆ−N,w =(cid:88)n(cid:100)N=/12(cid:101)−1|2n(cid:105)(cid:104)2n+1| (12a) cmreeanstainlgfothreanllucmubrreernotsf,sit.aeg.e|sQ˙f(rNo+m1)|ev≤en|Q˙t(oNo)|d,dwihseinndNeeidsdeveterni-. σˆ− =(cid:88)N−2|n(cid:105)(cid:104)n+2| (12b) Still for arbitrary N, one alwaαys finds |Qα˙(αN+2)|−|Q˙(αN)| ≥ 0, N,h n=1 thoughtheenhancementdecreasesasthesystemscalesup. σˆ− =(cid:88)(cid:98)N/2(cid:99)|2n−1(cid:105)(cid:104)2n| (12c) For practical purposes, one would wish to optimize the N,c n=1 incoming cold heat current to cool as quickly as possible. Given a set of heat baths T and dissipation rates γ , one ThedissipatorsinEq.(11)areinthestandardLindbladform α α has to find the cold frequency 0 ≤ ω ≤ ω that renders [39],whichguaranteesthatthereduceddynamicsofthesys- c c,max the maximum cooling power Q˙ for every fixed ω . The temiscompletelypositiveandtrace-preserving.Eachofthem c,max h correspondingCOPε isasensiblefigureofmeritforcooling individually,generatesafullycontractivedynamicsofthesys- ∗ tem towards its ‘local’ equilibrium states ∝ exp{−Hˆ /k T } and, asrigorouslyprovenin[34], itistightlyupperbounded N B α by d ε both in the single and double-stage cases, where [38],whichinturn,impliesthesecondlawofthermodynam- d+1 C d stands for the spatial dimensionality of the cold bath, i.e. icsasexpressedbyEq.(3)[30,33]. in our case d = 3. Once parameter optimization has taken placeatthesingle-stagelevel,weshallbeconcernedwiththe potentialenhancementinbothε andQ˙ asthenumberof B. Stationaryheatcurrents ∗ c,max stages,andthusthesystem’scomplexity,grows. In the light of Eqs. (10) and (11), our definition of steady-state heat current from Sec. II translates into Q˙(N) ≡ α tr{HˆNL(αN)(cid:37)ˆN(∞)}[25], wheretheasymptoticstate(cid:37)ˆN(∞)re- IV. RESULTSANDDISCUSSION sultsfromequatingtozerotheright-handsideofEq.(10). InthesimplestcaseofN =3,oneeasilyfinds A. MaximumpowerandCOPatmaximumpower Q˙(3) =ω (cid:104)3|L(3)(cid:37)ˆ (∞)|3(cid:105) (13a) w w w 3 The dependence of the maximum cooling power on the Q˙(h3) =ωh(cid:104)3|L(h3)(cid:37)ˆ3(∞)|3(cid:105) (13b) numberofstagesisillustratedinFig.2(a). Thetemperatures Q˙(3) =ω (cid:104)2|L(3)(cid:37)ˆ (∞)|2(cid:105). (13c) Tα,dissipationratesγαandthehotfrequencyωhwerechosen c c c 3 atrandomsoastofixthetimescalesforthermalfluctuations, Theadditionofasecondstagetotheheatpumpintroducesthe dissipation and system’s free evolution. Then, the optimiza- further cold and hot transitions |3(cid:105) ↔c |4(cid:105) and |2(cid:105) ↔h |4(cid:105) that tioAnsincoωucldwabseceaxrprieecdteoduftrwomithtihnetheveecno/oodlidngoswciinlldaotiwon.softhe contributetothetotalsteady-stateheatcurrentstoyield stationaryheatcurrents, Q˙ (N)scalesdifferentlyforeven c,max Q˙(4) =ω (cid:104)3|L(4)(cid:37)ˆ (∞)|3(cid:105) (14a) andodd N. Whileintheevencase,thecoolingpowerbarely w w w 4 increases, odd heat pumps significantly benefit from scaling (cid:16) (cid:17) Q˙(4) =ω (cid:104)3|L(4)(cid:37)ˆ (∞)|3(cid:105)+(cid:104)4|L(4)(cid:37)ˆ (∞)|4(cid:105) (14b) up. Onealsoseesthatanyevenconfigurationoutperformsall h h h 4 h 4 (cid:16) (cid:17) theoddones.Incontrast,thecorrespondingCOPatmaximum Q˙(4) =ω (cid:104)2|L(4)(cid:37)ˆ (∞)|2(cid:105)+(cid:104)4|L(4)(cid:37)ˆ (∞)|4(cid:105) . (14c) c c c 4 c 4 power ε proves to be roughly size-independent, as shown ∗ 5 0.10 a b 0.75 0.08 (cid:72) (cid:76) (cid:72) (cid:76) (cid:182) x (cid:42) ma 0.06 (cid:182) (cid:144) (cid:144) c, C (cid:144) (cid:144) Q (cid:160) 0.744795 0.04 0.744792 0.02 2 4 6 8 10 2 4 6 8 10 N N FIG.2: (a)(Squares)Maximumcoolingpowerasafunctionof N forgeneralizedmulti-stageheatpumpsinthechillerconfiguration,with parameters: T = 7.1×103,T = 1.57×103,T = 54.25,γ = 3.5×10−3,γ = 5.1×10−3,γ = 8.8×10−3 andω = 102.6((cid:126) = k = 1). w h c w h c h B (Rhombs)MaximumcoolingpowerforincreasingNwhenthemodesoftheworkreservoirareallsqueezedby7dB,whicheffectivelyraises theworktemperaturetoT (cid:39)1.8×104.(Triangles)MaximumcoolingpowerversusNforreversedmulti-stageCarnotengines,i.e.heatpumps w withsaturatedworktransitions. Thesolidorange,dottedredanddashedbluecurvesaremerelyaguidetotheeye,highlightingthedifferent sizescalingofdeviceswithevenandoddnumberofparallelcycles. Thedomainreachablebyabsorptionchillersisdepictedinshadedgray. (b)EfficiencyatmaximumpowerasafunctionofN,forthesameparametersasin(a). Theshadedgrayregioncorrespondthethedomainof ε allowedbyabosoniccoldbathinthreedimensionswithflatspectraldensity[34]. ∗ in Fig. 2(b). Consequently, the double-stage absorption heat sible, to benchmark the operation of realistic devices. The pump [26] tuned to operate at maximum power, appears as paradigmaticexampleistheCurzon-Ahlbornbound[41]: Al- thebestpossiblechoiceintermsofsystemoptimization. Our thoughobtainedforaspecificphenomenologicalmodelingof extensivenumericsshowthatthesepropertiesarecompletely the sources of irreversibility, i.e. the endoreversible approx- generalintherangeofapplicationofEqs.(10)and(11). imation, it emerges naturally as a limiting case in different Itisalwayspossibletoenhanceboththecoolingpowerand instances of heat engine [42, 45, 46] and describes well the thecorrespondingCOP,bysuitablyengineeringthespectrum performanceofactualpowerplants. of the environments [22–24]. Perhaps the simplest thing to The bound ε < 3ε , derived from first principles for the ∗ 4 C try is squeezing the modes of the work bath, which effec- three-level maser and the four-level double stage chiller in tively raises its temperature T and boosts the output power [34], has been also seen to hold [35] in the non-ideal eight- w of the heat pump [34]. The Carnot bound ε is also effec- levelrefrigeratormodelof[27],andevensucceedsinlimiting C tivelyincreased,whichallowsforlargerefficienciesatmaxi- from above the performance of classical endoreversible ab- mumpower. Theeffectofreservoirsqueezinginthecooling sorptionfridges[47]. Inordertoestablishwhetheritcontin- power is also illustrated in Fig. 2(a) for a squeezing of 7 dB ues to hold for multi-stage ideal absorption refrigerators be- or r (cid:39) 0.8 (see figure caption for details). As T increases, yondthecasesN =3andN =4,weperformedglobalnumer- w the corresponding contact transitions tend to saturate. In the ical optimization of ε over ω , T , γ and N ∈ [3,10]. An ∗ h α α limitofT →∞,onerealizesgeneralizedmulti-stageCarnot histogram on the resulting COP at maximum power for 105 w enginesrunninginreverse[10]andthus,abandonstherealm randomlydrawnrefrigeratorsispresentedinFig.3(a),clearly of absorption chillers. The limiting cooling powers are also showingthattheboundholdstightlyregardlessofthesizeof depictedinFig.2(a). thesystem. B. BoundontheCOPatmaximumpower C. Idealvs.non-idealabsorptionfridges ThequestfortightboundstotheCOPatmaximumpower Alotofinteresthasbeengeneratedbythenon-idealeight- for heat engines and refrigerators has attracted a lot of inter- level (three-qubit) absorption fridge, first introduced in [27], est over the last decades, both in the classical [41–43] and including experimental proposals for its implementation on quantum [16, 35, 44, 45] scenarios. By making minimal as- super-conductingqubits[48]andquantumdots[49]. Itisle- sumptionsaboutthedominatingsourcesofirreversibility,the gitimatetoaskhowdoesitcompare,intermsofabsolutecool- aimistoderivepracticalbounds,aswidelyapplicableaspos- ingpower,withitsidealeight-levelcounterpart. Interestingly, 6 aa bb 0.001 33 44 (cid:72)(cid:72) (cid:76)(cid:76) (cid:72)(cid:72) (cid:76)(cid:76) (cid:144)(cid:144) 10(cid:45)5 (cid:160) Q c 10(cid:45)7 10(cid:45)9 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 (cid:182) (cid:182) (cid:182) (cid:182) (cid:42) C C FIG.3: (a)HistogramoftheCOPatmaximumpowerfor105 multi-stageabsorptionfridgeswithω ,T ,γ andN chosenatrandom. The h α α blueverticallinemarksthe 43εCultimate(cid:144)boundonε∗[34].(b)Coolingpowerversusnormalizedefficien(cid:144)cyforthethree-qubitnon-idealfridge of[27](solidorange),andforaneight-levelidealchiller(dottedblue)forω =60,T =130,T =60,T =5andγ =10−3.Thethree-body w w h c α interactionstrengthbetweenthequbitsinthenon-idealmodelwassettog=0.1.Again,naturalunitsareassumed. allidealmulti-stagefridges(eventhethree-levelmaser), can thesizeofthesystem. beseentolargelyoutperformtheeightlevelnon-idealchiller, Even if the heat currents were formally given in Eqs. (11) typicallybyseveralordersofmagnitude. and (15), the explicit formulas for any N are quite involved In Fig. 3(b) this is illustrated by plotting together the per- and nothing but insightful. The whole analysis is therefore formancecharacteristicsofboththenon-idealthree-qubitand based on extensive numerics. It must be acknowledged as theideal‘sextuple-stage’(N =8)chiller,forthesamechoice well, that the working substance of an ideal multi-stage ab- of parameters. A closed curve in the Q˙ – ε plane is indica- sorption refrigerator is generally a rather artificial quantum c tive of irreversibility and prevents the refrigerator from ever system. Interestinglyenough,thecaseofN = 4,thatappears realizingtheCarnotefficiency. TheCOPatmaximumpower as the optimal compromise between performance and com- is roughly the same in both cases (close to its ultimate 3ε plexity,alsoturnsouttocorrespondtothetwo-qubitmodelof 4 C bound), but the power Q˙ of the ideal fridge exceeds that [26]. This suggests that it should be considered for practical c,max ofthenon-idealonebyoverthreeordersofmagnitude. applicationsofabsorptioncoolingtoquantumtechnologies. This suggests that any realistic application of absorption The double-stage fridge (more generally, any ideal heat technologies to quantum cooling, should rely upon physical pump) was seen to outperform by several orders of magni- implementations of ideal (multi-stage) heat pumps, out of tudethemaximumcoolingpowerdeliveredbytheonlyavail- which the double-stage design [26] stands out with its opti- able (non-ideal) alternative model: The three-qubit refriger- malbalancebetweenperformanceandsimplicity. ator [27]. Arrangements of superconducting qubits [48] or coupled quantum dots [49], similar to those proposed to re- alizethethree-qubitdevice,couldalsobegoodcandidatesto supportthemorepromisingdouble-stageabsorptionchillers. V. CONCLUSIONS Further enhancement of both the power and the efficiency can always be achieved by applying quantum reservoir Wehavestudiedthesizescalingofthepowerandtheeffi- engineering techniques [36, 37] meant to render exploitable ciencyofparallelmulti-stagequantumabsorptionheatpumps. nonequilibrium environmental fluctuations, thus raising Whenworkinginthechillerconfiguration, heatpumpscom- absorptiontechnologiestothelevelofthebestcompression- prisedofanoddandevennumberstages,scaledifferentlyin basedquantumthermodynamiccycles. terms of their maximum achievable cooling power: Devices with even N always provide a larger power, which is almost size-independent,whileinheatpumpswithoddN,themaxi- mumpowerincreaseswiththenumberofstages,quicklysat- urating to a constant asymptotic value. Contrarily, the effi- Acknowledgements ciency at maximum power does not significantly scale with N and, upon global optimization over all free parameters, it TheauthorisgratefultoG.Adesso,J.P.Palao,D.Alonso, saturatestothesamemodel-independentbound,regardlessof K. Hovhannisyan, P. Skrzypczyk, N. Brunner and P. Ramos- 7 Garc´ıa for fruitful discussions and useful comments. This Canary Islands Government through the ACIISI fellowships workwassupportedbytheCOSTActionMP1006andbythe (85%cofundedbyEuropeanSocialFund). [1] J.M.GordonandK.C.Ng,Coolthermodynamics(Cambridge 056130(2001). internationalsciencepublishingCambridge,2000). [26] A.LevyandR.Kosloff,Phys.Rev.Lett.108,070604(2012). [2] A.EinsteinandL.Szilard,Appl.USPatent16(1927). [27] N.Linden,S.Popescu,andP.Skrzypczyk,Phys.Rev.Lett.105, [3] P. Srikhirin, S. Aphornratana, and S. Chungpaibulpatana, Re- 130401(2010). newableandsustainableenergyreviews5,343(2001). [28] P.Skrzypczyk,N.Brunner,N.Linden,andS.Popescu,J.Phys. [4] F.Ziegler,R.Kahn,F.Summerer,andG.Alefeld,International A:Math.Theor.44,492002(2011). journalofrefrigeration16,301(1993). [29] N.Brunner, N.Linden, S.Popescu, andP.Skrzypczyk, Phys. [5] M.Lawson,R.Lithgow,andG.Vliet,ASHRAETrans.;(United Rev.E85,051117(2012). States)88(1982). [30] A. Levy, R. Alicki, and R. Kosloff, Phys. Rev. E 85, 061126 [6] R.DeVault,J.Marsala,etal.,Tech.Rep.,OakRidgeNational (2012). Lab.,TN(USA)(1990). [31] N. Brunner, M. Huber, N. Linden, S. Popescu, R. Silva, and [7] G.Grossman,A.Zaltash,P.Adcock,andR.DeVault,ASHRAE P.Skrzypczyk,e-printarXiv:1305.6009v1. journal37(1995). [32] A.MariandJ.Eisert,Phys.Rev.Lett.108,120602(2012). [8] H.E.D.ScovilandE.O.Schulz-DuBois, Phys.Rev.Lett.2, [33] R.Kosloff,Entropy15,2100(2013),ISSN1099-4300. 262(1959). [34] L. A. Correa, J. P. Palao, D. Alonso, and G. Adesso, e-print [9] J.Geusic,E.Bois,R.DeGrasse,andH.Scovil,JournalofAp- arXiv:1308.4174. pliedPhysics30,1113(1959),ISSN0021-8979. [35] L.A.Correa,J.P.Palao,G.Adesso,andD.Alonso,Phys.Rev. [10] J.E.Geusic,E.O.Schulz-DuBios,andH.E.D.Scovil,Phys. E87,042131(2013). Rev.156,343(1967). [36] N.Lu¨tkenhaus,J.I.Cirac,andP.Zoller,Phys.Rev.A57,548 [11] R.KosloffandA.Levy,e-printarXiv:1310.0683. (1998). [12] H.T.Quan,Y.-x.Liu,C.P.Sun,andF.Nori,Phys.Rev.E76, [37] E.ShahmoonandG.Kurizki, PhysicalReviewA87, 013841 031105(2007). (2013). [13] H.T.Quan,Phys.Rev.E79,041129(2009). [38] H.Spohn,JournalofMathematicalPhysics19,1227(1978). [14] E.GevaandR.Kosloff,J.Chem.Phys.104,7681(1996). [39] G.Lindblad,Comm.Math.Phys.48,119(1976). [15] D.Gelbwaser-Klimovsky,R.Alicki,andG.Kurizki,Phys.Rev. [40] H. Breuer and F. Petruccione, The Theory of Open Quantum E87,012140(2013). Systems(OxfordUniversityPress,USA,2002). [16] A. E. Allahverdyan, K. Hovhannisyan, and G. Mahler, Phys. [41] F.CurzonandB.Ahlborn,Am.J.Phys.43,22(1975). Rev.E81,051129(2010). [42] M.Esposito,R.Kawai,K.Lindenberg,andC.VandenBroeck, [17] Y.ZhouandD.Segal,Phys.Rev.E82,011120(2010). Phys.Rev.Lett.105,150603(2010). [18] S.W.Kim,T.Sagawa,S.DeLiberato,andM.Ueda,Phys.Rev. [43] S.Velasco, J.M.M.Roco, A.Medina, andA.C.Herna´ndez, Lett.106,070401(2011). Phys.Rev.Lett.78,3241(1997). [19] E.BoukobzaandH.Ritsch,Phys.Rev.A87,063845(2013). [44] S.Abe,Phys.Rev.E83,041117(2011). [20] D. Gelbwaser-Klimovsky, R. Alicki, and G. Kurizki, e-print [45] J. Wang, J. He, and Z. Wu, Physical Review E 85, 031145 arXiv:1309.5716. (2012). [21] O.Abah,J.Roßnagel,G.Jacob,S.Deffner,F.Schmidt-Kaler, [46] M.Esposito,K.Lindenberg,andC.VandenBroeck,Phys.Rev. K.Singer,andE.Lutz,Phys.Rev.Lett.109,203006(2012). Lett.102,130602(2009). [22] J.Roßnagel,O.Abah,F.Schmidt-Kaler,K.Singer,andE.Lutz, [47] J.ChenandZ.Yan,Phys.Rev.A39,4140(1989). e-printarXiv:1308.5935. [48] Y.-X.ChenandS.-W.Li,EPL(EurophysicsLetters)97,40003 [23] X.L.Huang,T.Wang,andX.X.Yi,Phys.Rev.E86,051105 (2012). (2012). [49] D. Venturelli, R. Fazio, and V. Giovannetti, Phys. Rev. Lett. [24] O.AbahandE.Lutz,e-printarXiv:1303.6558. 110,256801(2013). [25] J. P. Palao, R. Kosloff, and J. M. Gordon, Phys. Rev. E 64,