Multi-Sensor Data Fusion with M ATLAB® Multi-Sensor Data Fusion with M ATLAB® Jitendra R. Raol Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business MATLAB® and Simulink® are trademarks of The MathWorks, Inc. and are used with permission. The MathWorks does not warrant the accuracy of the text of exercises in this book. This book’s use or dis- cussion of MATLAB® and Simulink® software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB® and Simulink® software. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2010 by Taylor and Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number: 978-1-4398-0003-4 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, trans- mitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Raol, J. R. (Jitendra R.), 1947- Multi-sensor data fusion with MATLAB / Jitendra R. Raol. p. cm. “A CRC title.” Includes bibliographical references and index. ISBN 978-1-4398-0003-4 (hardcover : alk. paper) 1. Multisensor data fusion—D ata processing. 2. MATLAB. 3. Detectors. I. Title. TA331.R36 2010 681’.2—dc22 2009041607 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com The book is dedicated in loving memory to Professor P. N. Thakre (M. S. University of Baroda, Vadodara), Professor Vimal K. Dubey (Nanyang Technological University, Singapore), and Professor Vinod J. Modi (University of British Columbia, Canada) Contents Preface ...................................................................................................xix Acknowledgments ................................................................................xxi Author .................................................................................................xxiii Contributors .........................................................................................xxv Introduction .......................................................................................xxvii Part I: Theory of Data Fusion and Kinematic-Level Fusion (J. R. Raol, G. Girija, and N. Shanthakumar) 1. Introduction ..................................................................................................3 2. Concepts and Theory of Data Fusion .....................................................11 2.1 Models of the Data Fusion Process and Architectures .....................11 2.1.1 Data Fusion Models ....................................................................13 2.1.1.1 Joint Directors of Laboratories Model .......................13 2.1.1.2 Modifi ed Waterfall Fusion Model ..............................17 2.1.1.3 Intelligence Cycle–Based Model ................................18 2.1.1.4 Boyd Model ...................................................................19 2.1.1.5 Omnibus Model ...........................................................20 2.1.2 Fusion Architectures ..................................................................21 2.1.2.1 Centralized Fusion .......................................................21 2.1.2.2 Distributed Fusion .......................................................21 2.1.2.3 Hybrid Fusion ...............................................................22 2.2 Unifi ed Estimation Fusion Models and Other Methods ...................23 2.2.1 Defi nition of the Estimation Fusion Process ...........................24 2.2.2 Unifi ed Fusion Models Methodology ......................................25 2.2.2.1 Special Cases of the Unifi ed Fusion Models ............25 2.2.2.2 Correlation in the Unifi ed Fusion Models ................26 2.2.3 Unifi ed Optimal Fusion Rules ..................................................27 2.2.3.1 Best Linear Unbiased Estimation Fusion Rules with Complete Prior Knowledge ...............................27 2.2.3.2 Best Linear Unbiased Estimation Fusion Rules without Prior Knowledge ...........................................28 2.2.3.3 Best Linear Unbiased Estimation Fusion Rules with Incomplete Prior Knowledge ............................28 2.2.3.4 Optimal-Weighted Least Squares Fusion Rule ........28 2.2.3.5 Optimal Generalized Weighted Least Squares Fusion Rule ...................................................................29 vii viii Contents 2.2.4 Kalman Filter Technique as a Data Fuser ...............................29 2.2.4.1 Data Update Algorithm...............................................30 2.2.4.2 State-Propagation Algorithm .....................................31 2.2.5 Inference Methods ......................................................................32 2.2.6 Perception, Sensing, and Fusion ...............................................32 2.3 Bayesian and Dempster–Shafer Fusion Methods ..............................33 2.3.1 Bayesian Method .........................................................................34 2.3.1.1 Bayesian Method for Fusion of Data from Two Sensors ..................................................................36 2.3.2 Dempster–Shafer Method .........................................................38 2.3.3 Comparison of the Bayesian Inference Method and the Dempster–Shafer Method ...................................................40 2.4 Entropy-Based Sensor Data Fusion Approach ...................................41 2.4.1 Defi nition of Information ..........................................................41 2.4.2 Mutual Information ....................................................................43 2.4.3 Entropy in the Context of an Image .........................................44 2.4.4 Image-Noise Index ......................................................................44 2.5 Sensor Modeling, Sensor Management, and Information Pooling .....45 2.5.1 Sensor Types and Classifi cation ...............................................45 2.5.1.1 Sensor Technology .......................................................46 2.5.1.2 Other Sensors and their Important Features and Usages ....................................................................48 2.5.1.3 Features of Sensors ......................................................51 2.5.1.4 Sensor Characteristics ...............................................52 2.5.2 Sensor Management ...................................................................53 2.5.2.1 Sensor Modeling ..........................................................55 2.5.2.2 Bayesian Network Model ............................................58 2.5.2.3 Situation Assessment Process ....................................58 2.5.3 Information-Pooling Methods ..................................................60 2.5.3.1 Linear Opinion Pool ....................................................60 2.5.3.2 Independent Opinion Pool .........................................61 2.5.3.3 Independent Likelihood Pool .....................................61 3. Strategies and Algorithms for Target Tracking and Data Fusion ...........................................................................................................63 3.1 State-Vector and Measurement-Level Fusion .....................................69 3.1.1 State-Vector Fusion .....................................................................70 3.1.2 Measurement Data–Level Fusion .............................................71 3.1.3 Results with Simulated and Real Data Trajectories ...............71 3.1.4 Results for Data from a Remote Sensing Agency with Measurement Data–Level Fusion .............................................72 3.2 Factorization Kalman Filters for Sensor Data Characterization and Fusion ................................................................................................73 3.2.1 Sensor Bias Errors .......................................................................73 Contents ix 3.2.2 Error State-Space Kalman Filter ...............................................75 3.2.3 Measurement and Process Noise Covariance Estimation ....................................................................................76 3.2.4 Time Stamp and Time Delay Errors .........................................77 3.2.5 Multisensor Data Fusion Scheme .............................................77 3.2.5.1 UD Filters for Trajectory Estimation .........................80 3.2.5.2 Measurement Fusion ...................................................81 3.2.5.3 State-Vector Fusion .......................................................82 3.2.5.4 Fusion Philosophy ........................................................82 3.3 Square-Root Information Filtering and Fusion in Decentralized Architecture ...................................................................86 3.3.1 Information Filter ........................................................................87 3.3.1.1 Information Filter Concept .........................................87 3.3.1.2 Square Root Information Filter Algorithm ..............88 3.3.2 Square Root Information Filter Sensor Data Fusion Algorithm .....................................................................................88 3.3.3 Decentralized Square Root Information Filter .......................89 3.3.4 Numerical Simulation Results ..................................................91 3.4 Nearest Neighbor and Probabilistic Data Association Filter Algorithms ...............................................................................................93 3.4.1 Nearest Neighborhood Kalman Filter .....................................94 3.4.2 Probabilistic Data Association Filter ........................................96 3.4.3 Tracking and Data Association Program for Multisensor, Multitarget Sensors .............................................97 3.4.3.1 Sensor Attributes..........................................................99 3.4.3.2 Data Set Conversion .....................................................99 3.4.3.3 Gating in Multisensor, Multitarget ..........................100 3.4.3.4 Measurement-to-Track Association .........................100 3.4.3.5 Initiation of Track and Extrapolation of Track .......101 3.4.3.6 Extrapolation of Tracks into Next Sensor Field of View .........................................................................101 3.4.3.7 Extrapolation of Tracks into Next Scan ...................102 3.4.3.8 Track Management Process ......................................102 3.4.4 Numerical Simulation ..............................................................103 3.5 Interacting Multiple Model Algorithm for Maneuvering Target Tracking .....................................................................................106 3.5.1 Interacting Multiple Model Kalman Filter Algorithm ........106 3.5.1.1 Interaction and Mixing .............................................108 3.5.1.2 Kalman Filtering ........................................................108 3.5.1.3 Mode Probability Update ..........................................109 3.5.1.4 State Estimate and Covariance Combiner ..............109 3.5.2 Target Motion Models ...............................................................110 3.5.2.1 Constant Velocity Model ............................................110 3.5.2.2 Constant Acceleration Model ....................................110
Description: