ebook img

Multi-Objective Optimization in Chemical Engineering: Developments and Applications PDF

514 Pages·2013·5.849 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multi-Objective Optimization in Chemical Engineering: Developments and Applications

Multi-Objective Optimization in Chemical Engineering Multi-Objective Optimization in Chemical Engineering Developments and Applications Edited by GADE PANDU RANGAIAH Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore ADRIA´N BONILLA-PETRICIOLET Department of Chemical Engineering, Instituto Tecnolo´gico de Aguascalientes, Mexico A John Wiley & Sons, Ltd., Publication Thiseditionfirstpublished2013 (cid:2)C 2013JohnWiley&Sons,Ltd. Registeredoffice JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UnitedKingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapplyforpermissiontoreuse thecopyrightmaterialinthisbookpleaseseeourwebsiteatwww.wiley.com. TherightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewiththeCopyright,Designs andPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyformorby anymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbytheUKCopyright,Designsand PatentsAct1988,withoutthepriorpermissionofthepublisher. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbeavailablein electronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrandnamesandproduct namesusedinthisbookaretradenames,servicemarks,trademarksorregisteredtrademarksoftheirrespectiveowners.The publisherisnotassociatedwithanyproductorvendormentionedinthisbook.Thispublicationisdesignedtoprovideaccurate andauthoritativeinformationinregardtothesubjectmattercovered.Itissoldontheunderstandingthatthepublisherisnot engagedinrenderingprofessionalservices.Ifprofessionaladviceorotherexpertassistanceisrequired,theservicesofa competentprofessionalshouldbesought. Thepublisherandtheauthormakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontents ofthisworkandspecificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesoffitnessfora particularpurpose.Thisworkissoldwiththeunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices. Theadviceandstrategiescontainedhereinmaynotbesuitableforeverysituation.Inviewofongoingresearch,equipment modifications,changesingovernmentalregulations,andtheconstantflowofinformationrelatingtotheuseofexperimental reagents,equipment,anddevices,thereaderisurgedtoreviewandevaluatetheinformationprovidedinthepackageinsertor instructionsforeachchemical,pieceofequipment,reagent,ordevicefor,amongotherthings,anychangesintheinstructionsor indicationofusageandforaddedwarningsandprecautions.ThefactthatanorganizationorWebsiteisreferredtointhisworkas acitationand/orapotentialsourceoffurtherinformationdoesnotmeanthattheauthororthepublisherendorsestheinformation theorganizationorWebsitemayprovideorrecommendationsitmaymake.Further,readersshouldbeawarethatInternet Websiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.No warrantymaybecreatedorextendedbyanypromotionalstatementsforthiswork.Neitherthepublishernortheauthorshallbe liableforanydamagesarisingherefrom. LibraryofCongressCataloging-in-PublicationData Multi-objectiveoptimizationinchemicalengineering:developmentsandapplications/[editedby]GadeRangaiah,Adria´n Bonilla-Petriciolet. pages cm ISBN978-1-118-34166-7(hardback) 1.Chemicalprocesses. 2.Mathematicaloptimization. 3.Chemicalengineering. I.Rangaiah,GadePandu. II.Bonilla-Petriciolet,Adria´n. TP155.7.M6452013 660–dc23 2012048233 AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN:9781118341667 Setin10/12ptTimesbyAptaraInc.,NewDelhi,India Contents ListofContributors xiii Preface xv Part I Overview 1 1 Introduction 3 Adria´nBonilla-PetricioletandGadePanduRangaiah 1.1 OptimizationandChemicalEngineering 3 1.2 BasicDefinitionsandConceptsofMulti-ObjectiveOptimization 5 1.3 Multi-ObjectiveOptimizationinChemicalEngineering 8 1.4 ScopeandOrganizationoftheBook 9 References 15 2 OptimizationofPoolingProblemsforTwoObjectivesUsingthe ε-ConstraintMethod 17 HaiboZhangandGadePanduRangaiah 2.1 Introduction 17 2.2 PoolingProblemDescriptionandFormulations 19 2.2.1 p-Formulation 19 2.2.2 r-Formulation 21 2.3 ε-ConstraintMethodandIDEAlgorithm 25 2.4 ApplicationtoPoolingProblems 27 2.5 ResultsandDiscussion 28 2.6 Conclusions 32 Exercises 33 References 33 3 Multi-ObjectiveOptimizationApplicationsinChemicalEngineering 35 ShivomSharmaandGadePanduRangaiah 3.1 Introduction 35 3.2 MOOApplicationsinProcessDesignandOperation 37 3.3 MOOApplicationsinPetroleumRefining,Petrochemicalsand Polymerization 57 vi Contents 3.4 MOOApplicationsintheFoodIndustry,Biotechnologyand Pharmaceuticals 57 3.5 MOOApplicationsinPowerGenerationandCarbonDioxide Emissions 66 3.6 MOOApplicationsinRenewableEnergy 66 3.7 MOOApplicationsinHydrogenProductionandFuelCells 82 3.8 Conclusions 82 Acronyms 87 References 87 Part II Multi-ObjectiveOptimizationDevelopments 103 4 PerformanceComparisonofJumpingGeneAdaptationsoftheElitist Non-dominatedSortingGeneticAlgorithm 105 ShivomSharma,SeyedRezaNabaviandGadePanduRangaiah 4.1 Introduction 105 4.2 JumpingGeneAdaptations 107 4.3 TerminationCriterion 110 4.4 ConstraintHandlingandImplementationofPrograms 112 4.5 PerformanceComparison 114 4.5.1 PerformanceComparisononUnconstrainedTestFunctions 114 4.5.2 PerformanceComparisononConstrainedTestFunctions 121 4.6 Conclusions 124 Exercises 124 References 125 5 ImprovedConstraintHandlingTechniqueforMulti-Objective OptimizationwithApplicationtoTwoFermentationProcesses 129 ShivomSharmaandGadePanduRangaiah 5.1 Introduction 129 5.2 ConstraintHandlingApproachesinChemicalEngineering 131 5.3 AdaptiveConstraintRelaxationandFeasibilityApproachforSOO 132 5.4 AdaptiveRelaxationofConstraintsandFeasibilityApproachforMOO 133 5.5 TestingofMODE-ACRFA 136 5.6 Multi-ObjectiveOptimizationoftheFermentationProcess 139 5.6.1 Three-StageFermentationProcessIntegratedwithCell Recycling 139 5.6.2 Three-StageFermentationProcessIntegratedwithCell RecyclingandExtraction 145 5.6.3 GeneralDiscussion 152 5.7 Conclusions 153 Acronyms 153 References 154 Contents vii 6 RobustMulti-ObjectiveGeneticAlgorithm(RMOGA)withOnline ApproximationunderIntervalUncertainty 157 WeiweiHu,AdeelButt,AliAlmansoori,ShapourAzarmandAliElkamel 6.1 Introduction 157 6.2 BackgroundandDefinition 159 6.2.1 Multi-ObjectiveGeneticAlgorithm(MOGA) 160 6.2.2 Multi-ObjectiveRobustnesswithIntervalUncertainty: BasicIdea 161 6.3 RobustMulti-ObjectiveGeneticAlgorithm(RMOGA) 163 6.3.1 NestedRMOGA 163 6.3.2 SequentialRMOGA 165 6.3.3 ComparisonbetweenNestedandSequentialRMOGA 167 6.4 OnlineApproximation-AssistedRMOGA 168 6.4.1 StepsinApproximation-AssistedRMOGA 168 6.4.2 Sampling 169 6.4.3 MetamodelingandVerification 170 6.4.4 SampleSelectionandFiltering 171 6.5 CaseStudies 172 6.5.1 NumericalExample 172 6.5.2 OilRefineryCaseStudy 175 6.6 Conclusions 178 References 179 7 ChanceConstrainedProgrammingtoHandleUncertainty inNonlinearProcessModels 183 KishalayMitra 7.1 Introduction 183 7.2 UncertaintyHandlingTechniques 184 7.3 Chance-ConstrainedProgramming:Fundamentals 186 7.3.1 CalculationofP(hk(cid:2)(x(cid:3),ξ(cid:2))≥0)≥p (cid:4)(k=(cid:4)1,...,u) 192 7.3.2 Calculationofmax f˜(cid:3)P f(x,ξ)≥f˜ ≥α 193 7.4 IndustrialCaseStudy:Grinding 193 7.4.1 GrindingProcessandModeling 193 7.4.2 OptimizationFormulation 195 7.4.3 ResultsandDiscussion 199 7.5 Conclusions 206 Nomenclature 209 Appendices 210 A.1 CCPforNormallyDistributedUncertainParameters 210 A.2 CalculationofMeanandVarianceforGeneralFunction 212 References 212 viii Contents 8 FuzzyMulti-ObjectiveOptimizationforMetabolicReactionNetworks byMixed-IntegerHybridDifferentialEvolution 217 Feng-ShengWangandWu-HsiungWu 8.1 Introduction 217 8.2 ProblemFormulation 219 8.2.1 PrimalMulti-ObjectiveOptimizationProblem 219 8.2.2 ResilienceProblem 221 8.3 Optimality 223 8.4 Mixed-IntegerHybridDifferentialEvolution 228 8.4.1 Algorithm 228 8.4.2 ConstraintHandling 231 8.5 Examples 233 8.6 Conclusions 240 Exercises 241 References 242 Part III ChemicalEngineeringApplications 247 9 ParameterEstimationinPhaseEquilibriaCalculations UsingMulti-ObjectiveEvolutionaryAlgorithms 249 SameerPunnapala,FranciscoM.VargasandAliElkamel 9.1 Introduction 249 9.2 ParticleSwarmOptimization(PSO) 250 9.2.1 Multi-ObjectiveParticleSwarmOptimization(MO-PSO) 251 9.3 ParameterEstimationinPhaseEquilibriaCalculations 253 9.4 ModelDescription 253 9.4.1 VaporLiquidEquilibrium 254 9.4.2 HeatofMixing 255 9.5 Multi-ObjectiveOptimizationResultsandDiscussion 257 9.6 Conclusions 260 Nomenclature 260 Exercises 261 References 264 10 PhaseEquilibriumDataReconciliationUsingMulti-Objective DifferentialEvolutionwithTabuList 267 Adria´nBonilla-Petriciolet,ShivomSharmaandGadePanduRangaiah 10.1 Introduction 267 10.2 FormulationoftheDataReconciliationProblemforPhase EquilibriumModeling 270 10.2.1 DataReconciliationProblem 270 10.2.2 DataReconciliationforPhaseEquilibriumModeling 271 10.3 Multi-ObjectiveOptimizationusingDifferentialEvolutionwith TabuList 274 Contents ix 10.4 DataReconciliationofVapor-LiquidEquilibriumbyMOO 277 10.4.1 DescriptionoftheCaseStudy 277 10.4.2 DataReconciliationResults 278 10.5 Conclusions 287 Exercises 290 References 290 11 CO EmissionsTargetingforPetroleumRefineryOptimization 293 2 MohmmadA.Al-Mayyahi,AndrewF.A.HoadleyandGadePanduRangaiah 11.1 Introduction 293 11.1.1 OverviewoftheCDU 295 11.1.2 OverviewoftheFCC 296 11.1.3 PinchAnalysis 297 11.1.4 Multi–ObjectiveOptimization(MOO) 301 11.2 MOO-PinchAnalysisFrameworktoTargetCO Emissions 303 2 11.3 CaseStudies 304 11.3.1 CaseStudy1:DirectHeatIntegration 305 11.3.2 CaseStudy2:TotalSiteHeatIntegration 310 11.4 Conclusions 315 Nomenclature 315 Exercises 317 Appendices 318 A.1 ModelingofCDUandFCC 318 A.2 PreliminaryResultswithDifferentValuesforNSGA-IIParameters 320 A.3 PinchAnalysisTechniques 320 A.3.1 CompositeCurves(CC) 322 A.3.2 GrandCompositeCurve(GCC) 326 A.3.3 TotalSiteProfiles 326 References 331 12 EcodesignofChemicalProcesseswithMulti-ObjectiveGenetic Algorithms 335 CatherineAzzaro-Pantel,AdamaOuattaraandLucPibouleau 12.1 Introduction 335 12.2 NumericalTools 337 12.2.1 EvolutionaryApproach:Multi-ObjectiveGenetic Algorithms 337 12.2.2 ChoiceoftheBestSolutions 337 12.3 Williams–OttoProcess(WOP)OptimizationforMultipleEconomic andEnvironmentalObjectives 338 12.3.1 ProcessModelling 338 12.3.2 OptimizationVariables 339 12.3.3 ObjectivesforOptimization 340 12.3.4 ProblemConstraints 341 x Contents 12.3.5 Implementation 341 12.3.6 ProcedureValidation 341 12.3.7 Tri-ObjectiveOptimization 343 12.3.8 Discussion 346 12.4 RevisitingtheHDAProcess 346 12.4.1 HDAProcessDescriptionandModellingPrinciples 346 12.4.2 OptimizationVariables 349 12.4.3 ObjectiveFunctions 350 12.4.4 Multi-ObjectiveOptimization 354 12.5 Conclusions 361 Acronyms 363 References 364 13 ModelingandMulti-ObjectiveOptimizationofa ChromatographicSystem 369 AbhijitTarafder 13.1 Introduction 369 13.2 Chromatography—SomeFacts 371 13.3 ModelingChromatographicSystems 373 13.4 SolvingtheModelEquations 376 13.5 StepsforModelCharacterization 377 13.5.1 IsothermsandtheParameters 378 13.5.2 SelectionofIsotherms 379 13.5.3 ExperimentalStepstoGenerateFirstApproximation 382 13.6 DescriptionoftheOptimizationRoutine—NSGA-II 387 13.7 OptimizationofaBinarySeparationinChromatography 387 13.7.1 SelectionoftheObjectiveFunctions 387 13.7.2 SelectionoftheDecisionVariables 388 13.7.3 SelectionoftheConstraints 389 13.8 AnExampleStudy 390 13.8.1 SchemesoftheOptimizationStudies 390 13.8.2 ResultsandDiscussion 393 13.9 Conclusions 396 References 397 14 EstimationofCrystalSizeDistribution:ImageThresholdingBasedon Multi-ObjectiveOptimization 399 KarthikRajaPeriasamyandS.Lakshminarayanan 14.1 Introduction 399 14.2 Methodology 401 14.3 ImageSimulation 402 14.3.1 CameraModel 402 14.3.2 ProcessModel 402 14.3.3 Assumptions 403 14.4 ImagePreprocessing 404 Contents xi 14.5 ImageSegmentation 404 14.5.1 ImageThresholdingBasedonSingleObjectiveOptimization 404 14.5.2 Multi-ObjectiveOptimization 406 14.5.3 ProblemFormulation 409 14.5.4 ResultsandDiscussion 410 14.6 FeatureExtraction 413 14.6.1 ResultsandDiscussion 414 14.7 FutureWork 417 14.8 Conclusions 418 Nomenclature 418 References 419 15 Multi-ObjectiveOptimizationofaHybridSteamStripper-Membrane ProcessforContinuousBioethanolPurification 423 KrishnaGudena,GadePanduRangaiahandS.Lakshminarayanan 15.1 Introduction 423 15.2 DescriptionandDesignofaHybridStripper-MembraneSystem 426 15.2.1 HybridStripper-MembraneSystemofHuangetal. 426 15.2.2 ModifiedDesignoftheHybridStripper-MembraneSystem 427 15.3 MathematicalFormulationandOptimization 431 15.3.1 ProblemFormulation 432 15.3.2 OptimizationMethodologyforMOOProblemsin CasesAandB 434 15.4 ResultsandDiscussion 435 15.4.1 MaximizeEthanolPurity(f )andMinimizeOperating purity Cost/kgofBioethanol(f ) 435 cost 15.4.2 MinimizeEthanolLoss(f )andalsoOperatingCost/kgof loss Bioethanol(f ) 439 cost 15.4.3 DetailedAnalysisofaSelectedOptimalSolution 440 15.5 Conclusions 445 Exercises 445 References 446 16 ProcessDesignforEconomic,EnvironmentalandSafetyObjectiveswith anApplicationtotheCumeneProcess 449 ShivomSharma,ZiChaoLimandGadePanduRangaiah 16.1 Introduction 449 16.2 ReviewandCalculationofSafetyIndices 451 16.2.1 IntegratedInherentSafetyIndex(I2SI) 452 16.3 CumeneProcess,itsSimulationandCosting 455 16.4 I2SICalculationforCumeneProcess 459 16.4.1 FEDRCalculationforUnitsInvolvingPhysicalOperations 459 16.4.2 FEDRCalculationforUnitsInvolvingChemicalReactions 460 16.4.3 TDRCalculation 461 16.4.4 ConversionofFEDRtoFEDI,andTDRtoTDI 462

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.