applied sciences Article Multi-Fidelity Multi-Objective Efficient Global Optimization Applied to Airfoil Design Problems AtthaphonAriyarit*,† ID andMasahiroKanazaki DepartmentofAerospaceEngineering,GraduateSchoolofSystemDesign,TokyoMetropolitanUniversity, Hino-shi,Tokyo191-0065,Japan;[email protected] * Correspondence:[email protected];Tel.:+66-86-972-5642 † Theseauthorscontributedequallytothiswork. Received:30October2017;Accepted:15December2017;Published:18December2017 Abstract: Inthisstudy,efficientglobaloptimization(EGO)withamulti-fidelityhybridsurrogate model for multi-objective optimization is proposed to solve multi-objective real-world design problems. Intheproposedapproach,adesignexplorationiscarriedoutassistedbysurrogatemodels, whichareconstructedbyaddingalocaldeviationestimatedbythekrigingmethodandaglobalmodel approximatedbyaradialbasisfunction. Anexpectedhypervolumeimprovementisthencomputed onthebasisofthemodeluncertaintytodetermineadditionalsamplesthatcouldimprovethemodel accuracy. Intheinvestigation,theproposedapproachisappliedtotwo-objectiveandthree-objective optimization test functions. Then, it is applied to aerodynamic airfoil design optimization with two objective functions, namely minimization of aerodynamic drag and maximization of airfoil thickness at the trailing edge. Finally, the proposed method is applied to aerodynamic airfoil designoptimizationwiththreeobjectivefunctions,namelyminimizationofaerodynamicdragat cruisingspeed,maximizationofairfoilthicknessatthetrialingedgeandmaximizationofliftatlow speedassumingalandingattitude. XFOILisusedtoinvestigatethelow-fidelityaerodynamicforce, and a Reynolds-averaged Navier–Stokes simulation is applied for high-fidelity aerodynamics in conjunctionwithahigh-costapproach. Forcomparison,multi-objectiveoptimizationiscarriedout usingakrigingmodelonlywithahigh-fidelitysolver(singlefidelity). Thedesignresultsindicate thatthenon-dominatedsolutionsoftheproposedmethodachievegreaterdatadiversitythanthe optimalsolutionsofthekrigingmethod. Moreover,theproposedmethodgivesasmallererrorthan thekrigingmethod. Keywords: multi-fidelityoptimization;efficientglobaloptimization;multi-objectiveoptimization; airfoildesign 1. Introduction Ahigh-costcomputationfunctionisrequiredtosolveaerodynamicdesignproblems. Inaddition, real-worlddesignproblemsofteninvolveseveralobjectivefunctions[1,2]. Forexample, inaircraft design,itisnecessaryforadesignertoaccountfornotonlytheperformanceataspecificcruisecondition, butalsotheperformancesatalloperatingspeeds,includingthoseduringtake-offandlanding.Owing to these problems, several researchers have explored methods to reduce the computational costs of designoptimizationalgorithmsformulti-ormany-objectiveoptimizationproblems. Inaerodynamicevaluation,itispossibletoselectvariousphysicalcomputationmodelstosolvea designproblem[3]. Forexample,forcesaroundanairfoilcanbeevaluatedbyapotentialequationasa low-levelcomputation[4]. Moreover,theNavier–Stokesequationcanbeemployedasahigh-level computation[5]. Giventheadvantageoftheabove-mentionedapproach,amulti-fidelityapproach combinestwo-fidelitydataforoptimizationinordertoimprovetheefficiencyoftheoptimization Appl.Sci. 2017,7,1318;doi:10.3390/app7121318 www.mdpi.com/journal/applsci Appl.Sci. 2017,7,1318 2of21 process.Thus,approachesthatincludeamulti-fidelitysurrogatemodelhavebeenwidelystudied[6–8] inaerospaceengineering. Multi-fidelitymethodsforsingle-objectiveoptimizationbasedontheerror estimationofresponsesurfaceshavebeensuccessfullyappliedtodesignlow-boomsupersonicjets[6]. Because the response surfaces [9] use simple concepts to construct the function, the multi-fidelity functionbasedontheresponsesurfaceiseasytoconstruct.However,suchmethodsareoftenassociated withlowaccuracybecausetheresponsesurfacemodelcannotbeoptimizedinsituationsinvolving anextremelysmallnumberofdatapoints. Aco-krigingmodel[7,8]hasbeenextensivelyappliedto combinemulti-fidelityfunctions. Inaddition,ithasbeenemployedtosolveanoptimalsingle-objective airfoildesignproblem[7]. Thismethodisbeneficialforpredictingacomplicatedlandscapefunction. However,itislessoptimalinpredictingasmoothlandscapefunction.Rethoreproposedamulti-fidelity single-objectiveoptimizationprocessforwindturbinedesign[10,11]. Thisoptimizationprocessbegins with the location of an optimal point of a low-fidelity function by using a genetic algorithm (GA). Then, an optimization with a high-fidelity function is performed using a gradient-based method. Theoptimumpointofthelow-fidelityfunctionisusedasastartingpoint.Thismethodisbeneficial,asit usesabasicoptimizationtooltosolvethemulti-fidelityoptimizationproblem.However,itcouldfailto findanoptimumhigh-fidelityfunctioniftheerrorbetweenthelow-fidelityandhigh-fidelityfunctions islarge.Becausethegradient-basedmethodrequiredmanyevolutionfunctionstosolvemulti-objective optimizationproblems,themulti-fidelityoptimizationbasedonevolutionarycomputationcombined with the gradient method would not reduce the computation time of the high-fidelity function. Thus,multi-fidelityapproachesareexpectedtoimprovetheefficiency. An approach to multi-fidelity/multi-objective optimization involves a model reduction technique [12,13]. This technique has been applied to helicopter rotor blade design and airfoil design[13,14]. Theapplicationofthistechniquereducesthedesignparameterspacefordefiningthe possibledesignrangesbasedonalow-fidelityfunction. Ahigh-fidelityfunctionisthenusedtofind theoptimumdesignintheprimarydefineddesignrange. Thehigh-fidelityfunctionissampledby selectingthepreferreddesignpoints,wherethebladeshowsimprovedperformancewithrespectto thebaselinedesign,inordertoensuregooddiversityofthesampledata,inadditiontotheinitialpoint thatisgeneratedwiththeprimarydefineddesignrange. However,thisapproachhasthepotentialto obtainanunexpectedoptimalsolutionoutsidetheparameterspacegiventhatthedesignrangesof thelow-fidelityfunctionarenotalwaysappropriateforthehigh-fidelityfunction. Fusi[15]usedGA tofindtheoptimumsolutionoflow-fidelitydataandselectedtheinterestingpointsoftheoptimum solutionusingthelow-fidelitydatatofindtheoptimumpointofhigh-fidelitydataofahoveringrotor airfoildesign. Efficientglobaloptimization(EGO)[16]isawidely-usedmethodthatconsistsofkriging-model-based explorations. EGO involves additional sampling-procedure-based expected improvements (EIs) for improving the model accuracy. The EIs are defined for single-objective optimization. The expected hypervolumeimprovement(EHVI)algorithm[17,18]hasbeenproposedtoimprovethenon-dominated front defining the expectations of hypervolume improvements (HVI); it considers the model uncertainty, as well as the EIs. However, existing studies have not investigated the applicability ofEHVItomulti-fidelitytechniques. Inthisarticle,amulti-objectiveoptimizationprocessinvolving multi-fidelity/multi-objectiveEGOisproposedandinvestigatedthroughthesolutionsoftestfunctions andairfoildesignproblems. Withrespecttoairfoildesignproblems,alow-fidelityfunctionisusedto constructaglobalmodelthatcanprovidethegloballandscapeofthefunction. Further,ahigh-fidelity functionisusedtoevaluatelocaldeviations. Theglobalmodel,constructedbyaradialbasisfunction (RBF)[19,20]basedonadatabase,isevaluatedusinglow-fidelitymodels.Localvariancesarepredicted using a correlation term of the kriging method. The study involves airfoil design problems with two and three objectives. The results of the optimization are compared with those of an ordinary kriging-basedEHVIinvolvingasingle-fidelityapproach. Appl.Sci. 2017,7,1318 3of21 2. SurrogateModelsforDesignOptimization 2.1. KrigingMethod Anordinarykrigingmethod[21]predictstheunknownfunctionyˆ(x)as: yˆ(x) = µ+ε(x), (1) where µ is global model and ε(x) is a local deviation. The sample points x are interpolated with Gaussianrandomfunction. ThecorrelationbetweenZ(x )andZ(x )isrelatedtothedistancebetween i j thetwocorrespondingpointx andx . Alocaldeviationε(x)isexpressedas: i j n d(x,x ) = ∑ θk|xk−xk|2, (2) i j i j k=1 whereθk(0≤ θk ≤ ∞)isthek-thelementofthecorrelationvectorparameterandnisthenumberof thesamplepoints. Thecorrelationbetweenthepointsx andx isdefinedas: i j (cid:2) (cid:3) (cid:2) (cid:3) Corr Z(x ),Z(x ) =exp −d(x,x ) . (3) i j i j Thekrigingpredictioncanbeexpressedas: yˆ(x) = µ+rTR−1(F−µˆ), (4) where Z(x ) represents a local deviation from the global model [22], F = i (cid:2)f(x ), f(x ), f(x ),..., f(x )(cid:3)T is the value of the evaluated function at X = {x ,x ,x ,...,x }, 1 2 3 n 1 2 3 n (cid:2) (cid:3) Rdenotesthen×nmatrixwhose(i,j)entryisCorr Z(x ),Z(x ) andristhevectori-thelement: i j r (x) =Corr(cid:2)Z(x),Z(xi)(cid:3). (5) i µisassumedtobeconstantintheoriginalkrigingmodel,andµˆ isgivenby: µˆ = [µ,µ,µ,...,µ]T, (6) whereµisdefinedas: 1TR−1F µ = . (7) 1TR−11 The unknown parameter, θ, for the kriging model can be estimated via maximum likelihood estimation(MLE): n 1 Ln(µ,σ2,θ) = − ln(σ2)− ln(|R|). (8) 2 2 MLEisanm-dimensionalunconstrainednonlinearoptimizationproblem.Inthisarticle,aGA[23] isusedtosolvethisproblem. Foragivenθ,σ2canbedefinedas: (F−µˆ)TR−1(F−µˆ) σ2 = . (9) n The mean square error s2(x) at a point x of this function can be calculated using the followingequation: (cid:34) (cid:35) 1−1TR−1F s2(x) = σ 1−rTR−1r+ , (10) 1TR−11 where1denotesann-dimensionalunitvector. Appl.Sci. 2017,7,1318 4of21 2.2. HybridSurrogateModelforMulti-FidelityApproach Inthissection,thehybridsurrogatemodel(Figure1)isproposedforthemulti-fidelityapproach. Theproposedapproachconstructedthelocaldeviationestimatedbythekrigingmethodandtheglobal modelapproximatedbytheRBF.ItemploysanRBFtorepresenttheglobalmodel,µ+ fr(x),basedon adatasetobtainedfromlow-fidelityevaluation. Theproposedapproachcombinesthekrigingmethod andtheRBFbythefollowingequation: yˆ(x) = [µ+ fr(x)]+rTR−1(F −µˆ−FR). (11) h ThelocaldeviationsrTR−1(F −µˆ−FR)areevaluatedonthebasisofahigh-fidelitydatasetusing h thekrigingmethod, where F = (cid:2)f (x ), f (x ), f (x ),..., f (x )(cid:3)T isthevalueofthehigh-fidelity h h 1 h 2 h 3 h n function at x = {x ,x ,x ,...,x }; FR = (cid:2)fr(x ), fr(x ), fr(x ),..., fr(x )(cid:3)T, fr(x) the function 1 2 3 n 1 2 3 n predictedfromthelow-fidelitydatathatpredictedbyRBF,canbeexpressedby(12): fr(x) = a +a f (x), (12) 0 1 l where f (x) is a function predicted by an RBF [19,20] using low-fidelity data and a and a are l 0 1 correlationtermsbetweenthelow-fidelitydataandthehigh-fidelitydata.Further,σ2canbedefinedas: (F−µˆ−FR)TR−1(F−µˆ−FR) σ2 = . (13) n The unknown parameters (θ,a and a ) for the hybrid surrogate multi-fidelity model can be 0 1 estimatedbyMLE,asexpressedby(8). TheRBFisusedtoapproximatetheglobalmodelofthehybridsurrogate-model. AnRBFisused topredictthelow-fidelityfunction(f (x))by: l n f (x) = ∑ w Φ(x−x ) (14) l m m m=1 where Φ(x) is an RBF, x is a sample point and w (m = 1,2,3,...,n) is a weighting function. A m m multi-quadraticfunctionisappliedasanRBFinthisstudy.Theweightingfunctionw=[w ,w ,w ,...,w ]T 1 2 3 n isdeterminedfromtheinterpolationconditions: Aw = F (15) a a ··· a 1,1 1,2 1,j a a ··· a where A = 2...,1 2...,2 ... 2...,j,ai,j = Φ(xi−xj),i =1,2,3,...,n,j =1,2,3,...,n a a ··· a i,1 i,2 i,j Here, F = (cid:2)f(x ), f(x ), f(x ),..., f(x )(cid:3)T is the value of the low-fidelity function at 1 2 3 n X = {x ,x ,x ,...,x }. 1 2 3 n Appl.Sci. 2017,7,1318 5of21 Figure1.Schematicillustrationofsingle-fidelityandmulti-fidelitysurrogatemodels. 3. EfficientGlobalOptimizationfortheMulti-ObjectiveProblem TheprocedureofEGOwiththeordinarykrigingmodelisillustratedinFigure2a.TheEGOprocess startswiththegeneratedinitialsamples.Inthisstudy,theLatinhypercubesampling(LHS)isemployed. Sample data are evaluated, and the model is predicted using the kriging method. An arbitrary optimizationmethodcanbeusedtofindanadditionalpointbymaximizinganEHVI[17,18].TheEHVI isthefunctionofthehypervolumeimprovement(HVI)combinedwiththeuncertaintyoftheadditional point. HVI is calculated from the hypervolume improvement of the additional sampling and the non-dominatedsolutionshowninFigure3a. TheEHVIatapointcanbeexpressedas: EHVI[f (x), f (x),..., f (x)] = 1 2 M (cid:90) fref1(cid:90) fref2 (cid:90) frefM (16) ... HVI[f (x), f (x),..., f (x)]×φ (F )φ (F )...φ (F )dF dF ...dF , 1 2 M 1 1 2 2 M M 1 2 M −∞ −∞ −∞ where F denotes the Gaussian random variable N[fˆ(x),sˆ2(x)]. φ(F) is the probability density i i i i i functionand f isthereferencevalueusedforcalculatingthehypervolume. Themaximizationof refi EHVIisconsideredastheupdatingcriteriontodeterminethelocationofanadditionalsamplepoint. Inthisstudy,thehypervolumeiscalculatedbasedontheHypEalgorithm[24],whichisanalgorithm thatusestheMonteCarlosimulation[25]toapproximatethehypervolumeformulti/many-objective optimization problems. The Monte Carlo simulation is one of the simplest ways to calculate the hypervolume(HV)formanydimensions,whichisoftendifficulttocalculate.Thus,theHypEalgorithm usesthebenefitoftheMonteCarlosimulationtocalculatethehypervolume. Thehypervolumeisthe volumeofthenon-dominatedsolutionsmeasuredfromthereferencepoint. Theschematicillustration ofthehypervolumeisshowninFigure3b. Appl.Sci. 2017,7,1318 6of21 (a) (b) Figure2. Flowchartofefficientglobaloptimization: (a)single-fidelityefficientglobaloptimization (EGO);(b)multi-fidelityEGO. (a) (b) Figure3. Schematicillustrationofhypervolumeimprovementandhypervolume: (a)hypervolume improvement;(b)hypervolume. ThebasicideaoftheoriginalEGO,namelyEHVI-basedexplanation,canalsobeappliedtothe hybridsurrogatemodelexpressedin(10),becauselocaldeviationsareestimatedusingthekriging method. TheprocedureofEGOwiththehybridsurrogatemodelproposedinthisstudyisshownin Figure2b. Theproposedhybridsurrogate-model-basedEGOstartsbyacquiringinitialsamplesfor alow-fidelity/low-costfunction. Thelow-fidelitysampledataareusedtopredicttheglobalmodel; then,asetofsamplesforahigh-fidelityfunctionisobtained. Thisresultisusedtoestimatethelocal deviationsusingthekrigingmethod. Then,themulti-fidelitysurrogatemodel,whichcanpredictthe unknownpointvalue(anapproximationofthehigh-fidelityfunction),isgenerated. AGA[23]isused tofindthemaximumEHVIpoint,x. Inthisstudy,theroulettewheelmethodwasusedintheselection process. Blendcrossover(BLX)-0.5[26]wasusedinthecrossoverprocess,anduniformmutation[27] withamutationrateof0.1wasusedinthemutationprocess. Appl.Sci. 2017,7,1318 7of21 4. InvestigationofProposedMethodbySolvingTestFunctions 4.1. Formulation Theproposedmulti-objectivemulti-fidelityEGOisinvestigatedbysolvingtwotestfunctions; onehastwoobjectivefunctions,andtheotherhasthreeobjectivefunctions. Theresultsarecompared withthoseofakriging-basedmulti-objectiveEGO.Thehigh-fidelityfunctionisdenotedby f,andthe low-fidelityfunctionisdenotedby f . l Thedefinitionoftwo-objectiveoptimizationproblemfromVanValedhuizen’stestsuite[28]is: (cid:16) 5 √ (cid:17) Minimize: f (x ,x ,...,x ) =1−exp −∑(x −1/ 5)2 1 1 2 5 i i=1 (cid:16) 5 √ (cid:17) Minimize: f (x ,x ,...,x ) =1−exp −∑(x +1/ 5)2 2 1 2 5 i i=1 (17) (cid:16) 5 √ (cid:17) f (x ,x ,...,x ) =1−exp −∑(0.5x −0.05−1/ 5)2 l1 1 2 5 i i=1 (cid:16) 5 √ (cid:17) f (x ,x ,...,x ) =1−exp −∑(0.75x +0.2+1/ 5)2 . l2 1 2 5 i i=1 Thedesignspaceofthisproblemisx ,x ,...,x ∈ [−2.5,2.5]. 1 2 5 ThedefinitionoftheDTLZ2three-objectiveoptimizationproblem[28]is: Minimize: f (x ,x ,...,x ) = (1+g)cos(0.5x π)cos(0.5x π) 1 1 2 5 i 2 Minimize: f (x ,x ,...,x ) = (1+g)cos(0.5x π)sin(0.5x π) 2 1 2 5 1 2 Minimize: f (x ,x ,...,x ) = (1+g)sin(0.5x π) 3 1 2 5 1 5 g = ∑(x −0.5)2 i i=3 (18) f (x ,x ,...,x ) = (0.5+1.5g )cos(0.6x π)cos(0.4x π) l1 1 2 5 c i 2 f (x ,x ,...,x ) = (0.3+1.2g )cos(0.4x π)sin(0.6x π) l2 1 2 5 c 1 2 f (x ,x ,...,x ) = (0.4+1.3g )sin(0.5x π) l3 1 2 5 c 1 5 g = ∑(0.8x −0.3)2. c i i=3 Thedesignspaceofthisproblemisx ,x ,...,x ∈ [0,1]. 1 2 5 Ineachinvestigation,10initialhigh-fidelitypoints, f,and150low-fidelitypoints, f ,wereacquired l byLHS.Thenumberofiterationswassetto30foreachtestfunction. 4.2. Two-ObjectiveTestFunctionResults Thesolutionspaceacquiredbytheproposedmulti-fidelity/multi-objectiveEGOiscompared with that acquired by the single-fidelity/multi-objective EGO as shown in Figure 4. Because the single-fidelity/multi-objectiveEGOfindslocaloptimumpointsatthebeginningoftheoptimization process, the solution for additional samples stalls earlier. On the other hand, the developed multi-fidelity/multi-objectiveEGOcanfindasolutionclosetotheglobaloptimumsolutionofthis multi-objective optimization problem. The histories of the hypervolumes of the two methods are comparedinFigure5. Theseresultsalsoindicatethattheproposedmulti-fidelity/multi-objective EGO provides better solutions, which shows higher diversity because its hypervolume is larger than that of the single-fidelity/multi-objective EGO. These results also suggest that the proposed multi-fidelity/multi-objectiveEGOobtainsbettersolutionsthanthesingle-fidelity/multi-objective Appl.Sci. 2017,7,1318 8of21 EGO,becausethenon-dominatedsolutionsoftheformercandominateallthenon-dominatedsolutions ofthelatter.Inaddition,comparisonsofthehypervolumesshowthatthesolutionofadditionalsamples bythesingle-fidelity/multi-objectiveEGOcontinuestostallearlier. (a) (b) Figure 4. Initial sampling data and additional sampling data of two-objective test problem: (a)multi-fidelityapproach;(b)single-fidelityapproach. Figure 5. Hypervolume comparison of multi-fidelity approach and single-fidelity approach of two-objectivetestproblem. To investigate the reason for the superiority of the proposed multi-fidelity/multi-objective EGO,thecross-validation[29,30]of f and f wascompared, asshowninFigure6. Itcanbeseen 1 2 that the linear regression line nearly coincides with the predicted line in the case of the proposed multi-fidelity/multi-objectiveEGO.Thus,themulti-fidelitysurrogatemodelachieveshigheraccuracy thanthesingle-fidelitysurrogatemodel. Morespecifically,theproposedmulti-fidelity/multi-objective EGOachieveshigheraccuracybecausethedatasetobtainedbylow-fidelityevaluationenablesthe surrogatemodeltopredictthesolutionintheuncertaintyregion. Appl.Sci. 2017,7,1318 9of21 Thedevelopedapproach Thesingle-fidelity (a) Thedevelopedapproach Thesingle-fidelity (b) Figure6.Cross-validationresultsofthetwo-objectivetestproblem:(a)resultof f ;(b)resultof f . 1 2 4.3. Three-ObjectiveTestFunctionResults Further,allthesamplesacquiredbythetwomethods(theproposedmulti-fidelity/multi-objective EGOandthesingle-fidelity/multi-objectiveEGO)arecomparedasshowninFigure7. Accordingto theseresults,theproposedmulti-fidelity/multi-objectiveEGOandthesingle-fidelity/multi-objective EGOhavesimilarnon-dominatedsolutions. However,theresultsofthemulti-fidelity/multi-objective EGO are better than those of the single-fidelity/multi-objective EGO because some of the results of additional sampling by the single-fidelity/multi-objective EGO stall at local optimum points. The hypervolumes of the two methods are compared in Figure 8. The hypervolume comparison of the proposed multi-fidelity/multi-objective EGO and single-fidelity/multi-objective EGO is shown in Figure 9. It suggests that the proposed multi-fidelity/multi-objective EGO gives better solutions than that of the single-fidelity/multi-objective EGO. These results indicate that the proposed multi-fidelity/multi-objective EGO has a higher convergence rate than the single-fidelity/multi-objective EGO. The solution of the proposed multi-fidelity/multi-objective EGO converges after 18 iterations with a larger hypervolume, whereas the solution of the single-fidelity/multi-objectiveEGOconvergesafter23iterations. Appl.Sci. 2017,7,1318 10of21 f vs. f f vs. f 1 2 1 3 f vs. f 2 3 (a) f vs. f f vs. f 1 2 1 3 f vs. f 2 3 (b) Figure 7. Initial sampling data and additional sampling data of three-objective test problem: (a)multi-fidelityapproach;(b)single-fidelityapproach.
Description: