ebook img

Multi-Color Simultaneous Photometry of the T-Tauri Star Having A Planetary Candidate CVSO 30 PDF

0.24 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multi-Color Simultaneous Photometry of the T-Tauri Star Having A Planetary Candidate CVSO 30

Publ.Astron.Soc.Japan(2014)00(0),1–6 1 doi:10.1093/pasj/xxx000 Multi-Color Simultaneous Photometry of the T-Tauri Star Having A Planetary Candidate CVSO 30 7 1 Masahiro ONITSUKA1,2, Akihiko FUKUI3, Norio NARITA,1,4,5, Teruyuki 0 HIRANO6, Nobuhiko KUSAKABE,1,5, Tsuguru RYU1,2 and Motohide 2 TAMURA,1,4,5 n a 1NationalAstronomicalObservatoryofJapan,NINS,2-21-1Osawa,Mitaka,Tokyo181-8588, J Japan 6 2SOKENDAI(TheGraduateUniversityforAdvancedStudies),2-21-1Osawa,Mitaka,Tokyo ] 181-8588,Japan P 3OkayamaAstrophysicalObservatory,NationalAstronomicalObservatoryofJapan,NINS, E Asakuchi,Okayama719-0232,Japan . h 4DepartmentofAstronomy,TheUniversityofTokyo,7-3-1Hongo,Bunkyo-ku,Tokyo, p 113-0033,Japan - o 5AstrobiologyCenter,NINS,2-21-1Osawa,Mitaka,Tokyo,181-8588,Japan r t 6DepartmentofEarthandPlanetary Sciences,TokyoInstituteofTechnology,2-12-1 s a Ookayama,Meguro-ku,Tokyo,152-8551,Japan [ ∗E-mail:[email protected] 1 v Received2016September7;Accepted2017January6 8 8 Abstract 5 1 We present three-band simultaneous observations of a weak-line T-Tauri star CVSO 30 0 (PTFO 8-8695), which is one of the youngest objects having a candidate transiting planet. . 1 The data were obtained with the Multicolor Simultaneous Camera for studying Atmospheres 0 of Transiting exoplanets (MuSCAT) on the 188 cm telescope at Okayama Astrophysical 7 1 Observatory in Japan. We observed the fading event in the g2′-, r2′-, and zs,2-bands simul- : taneously. As aresult,wefindasignificantwavelengthdependence offadingdepths ofabout v Xi 3.1%, 1.7%, 1.0% for the g2′-, r2′-, and zs,2-bands, respectively. A cloudless H/He dominant atmosphereofahotJupitercannotexplainthislargewavelengthdependence. Additionally,we r a rule out a scenario by the occultation of the gravity-darkened host star. Thus our result is in favorofthefadingoriginascircumstellardustclumporoccultationofanaccretionhotspot. Keywords:planetarysystems—stars:individual(CVSO30,PTFO8-8695)—techniques:photometric 1 Introduction of 323+−29363 pc. CVSO 30has themass of0.44M⊙ (usingthe Baraffe et al. 1998 model) or 0.34M⊙ (using the Siess et al. CVSO30b(PTFO8-8695b)isacandidatetransitinghotJupiter 2000 model), the radius of 1.39R⊙, and the effective temper- around a weak-line T Tauristar in the Orion OB1a/25-Ori re- ature of 3470 K (Bricen˜o et al. 2005). The candidate planet gion found by van Eyken et al. (2012). The age of CVSO 30 has the orbital period of 0.448413±0.000040 days which is isestimatedas∼3Myr(Bricen˜oetal.2005) makingthisob- comparabletotherotationalperiodofthehoststar,themassof jecttheyoungestcandidateplanet. ThehoststarisanM3type Mp ≤5.5±1.4MJup, theradius of1.91±0.21RJup,andthe pre-main-sequencestarintheOrionOB1aregionatadistance (cid:13)c 2014.AstronomicalSocietyofJapan. 2 PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 orbital semi-major axis of 0.00838±0.00072 AU(van Eyken fading shape is changing with time. We use the Multicolor etal.2012). Simultaneous Cameraforstudying Atmospheres of Transiting Incontrasttootherplanetarytransitingobjects,theobserved exoplanets (MuSCAT)(Naritaetal.2015)onthe188cmtele- fadinglightcurvesofCVSO30changewiththeobservational scopeatOkayamaAstrophysicalObservatory(OAO)toinvesti- epoch. Barnes et al. (2013) explained them in the combina- gatethewavelengthdependenceofafadingevent.Wedescribe tion of the precession of planetary orbit’s ascending node and the observations and the analysis method in sections 2 and 3. thestellargravitydarkeningeffectassumingsynchronizationof Section4showstheobservedlightcurves,theresultsoftransit the stellar rotation and the planetary orbital motion. Kamiaka fittingandwavelengthdependence.InSection5,wediscussthe etal.(2015)addedthephotometricdataandreanalyzedthelight originoftransit-likeevents. Finally,wesummarizeourresults curves using the precession and the gravity-darkening model andfutureplansinsection6. withouttheco-rotation. On the other hand, Ciardiet al.(2015) observedaprimary 2 Observation transitat4.5µmusingSpitzerIRACwithoutanysignofasec- ondary eclipse. Inaddition, their radial velocity measurement We observed a fading event of CVSO 30 on 2016 Feb. 9 showednoevidenceoftheRossiter-McLaughlineffect.Yuetal. (UT).WeusedtheMuSCATonthe188-cmtelescopeatOAO. (2015)observed13eventswithi′-bandandother13eventswith MuSCATcansimultaneouslytakethree-bandimagesusingtwo I+z-bandoverthreeyears.Theyfoundthatthefadingperiodis dichroic mirrors and the SDSS g2′-, r2′-, and zs,2-band filters. notconstant. Multiband simultaneous observations weredone MuSCATequipsthree1024×1024pixelsCCDswiththefield for five fading events, of which r′- and I+z-bands observed ofviewof6′.1×6′.1. simultaneously ontwoother nights, i′-andg′-bands observed Toachievethehighprecisionphotometry,wedidnotdither on another two nights, and I+z- and H-bands observed on butfixedthetargetposition onthedetector,anddefocusedthe onenight. Theirmultibandobservationsyieldedthatthedepth stellar PSF. The exposure times were 60 seconds for all the of all but one fading events was deeper at short wavelengths; bands. We obtained 238, 236, and 236 frames for the g2′-, oneofthefadingeventsinther′-andI+z-bandsshowedthe r2′-, and zs,2-bands, respectively, in 4.4 hours. Data reduction same depth. Additionally, they tried to detect the secondary andaperturephotometry wereprocessedusingthecustomized eclipseatinfraredandtheRossiter-McLaughlineffectbyhigh- pipelinebyFukuietal.(2011). resolutionspectroscopy. However,theywereunabletofindthe expected signature inboth observations but found strongvari- 3 Analysis able Hα and Ca H & K lines. Hence Yu et al. (2015) argued thatthetransit-likeeventswereunlikelytobecausedbyagiant Our analysis method is similar to that used by Fukui et al. planet but rather caused by either starspots near the rotational (2016). First, we make light curves using different combina- pole, circumstellar dust clump transit or occultation of an ac- tionsofcomparisonstarsandvariousapertureradii.Wechoose cretionhotspot. Raetzetal.(2016) observed 33fadingevents thecomparisonstarswhicharenotsaturatednorvariablestars and found that the period of the fading event was shortened. andtheapertureradiuswhichproducesalightcurvewithmini- They also observed a fading event in the B- and the R-bands mumdispersionoutsidethefadingevent.Theselectedaperture simultaneously,andfoundthatthelightcurveshowedthesame radiiare17,14, and12pixels fortheg2′-,r2′-,andzs,2-bands, depth. Johns-Krulletal.(2016)observedexcessHαemission respectively, and the comparison stars are the same two stars of CVSO 30. The excess Hα emission was not detected con- foreachband.Second,weconvertthetimesystemofModified stantly. However, the observed velocity motion in transit was JulianDay(MJD)inUniversalTimeCoordinate(UTC)which almost expected. They argued that this excess came from the is recorded in the FITS headers into Barycentric Julian Day planetinthemiddleofmassloss. (BJD) in Barycentric Dynamical Time (TDB) using the algo- Aspresentedabove,thetruenatureofCVSO30bisstillun- rithm of Eastman, Siverd, & Gaudi (2010). We also remove clear, and both planet and non-planet scenarios have been ar- outliersthatseparatebeyond5σfrommeanrelativefluxofeach gued. Thus further observational findings are still important band.Asaresult,weuse172,221,and220datafortheg2′-,r2′- to reveal the identity of CVSO 30b. We focus on that in the , and zs,2-bands, respectively. The produced light curves are previous studies both the presence and absence of the wave- showninthetoppanelsinFigure1. length dependence inthedepth offadingevents havebeenre- Next,wefitthelightcurveswithatransitmodel,assuming ported(Yu etal.2015; Raetz etal. 2016). Weherereportour that the fading event is caused by a transiting spherical body. resultsofindependentthree-bandsimultaneoustransitphotom- Weusethe transit light curvemodel by Ohta, Taruya, & Suto etry for a fading event of CVSO 30. The simultaneity is im- (2009)whichiscomparabletothequadraticlimb-darkeninglaw portantbecauseCVSO30hasalargestellarvariabilityandits caseofMandel&Agol(2002). Thetransitmodelingparame- PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 3 tersarethetimeofthetransitcenterTc,theratiooftheplanet Table1.Thebestfitparametersandthe to thestellar radius Rp/Rs, the ratioof the semimajor axis to uncertainties thestellarradius a/Rs, andtheimpactparameterb. Thevari- Parameter Value Uncertainty ations seen outside the fading event seem to be caused by the Tc[BJDTDB] 2457428.0758 +−00..00001174 variabilityofCVSO30itselforcomparisonstars,withchang- a/Rs 1.730 ±0.061 b 1.054 +0.121 ingofairmass,shiftingofstellarimagesonthedetectorandso Rp/Rs(g2′) 0.344 −+−000...100187165 on.Wefitthetransitlightcurvesandbaselinemodelatthesame Rp/Rs(r2′) 0.271 +−00..100656 timeusingthecustomizedcodebyFukuietal.(2016)whichis Rp/Rs(zs,2) 0.206 +−00..100644 basedonNaritaetal.(2007)andNaritaetal.(2013). Atransit k0(g2′) 1.0103 +−00..000054534 andout-of-transit(OOT)modelisexpressedas k0(r2′) 1.0016 +−00..00001174 k0(zs,2) 0.99713 +−00..0000008704 F =(k0+XkiXi)×Ftr (1) kt(g2′) 0.010 +−00..005499 i=1 kt(r2′) 0.018 +−00..001197 whereF istherelativeflux,Ftristhetransitlightcurvemodel, kt(zs,2) −0.0489 +−00..00009837 {X} are time-dependent observed variables for example air- mass,shiftsofstellarposition ontheCCDandsoon, {k}are Table2.Rp/Rsandtheuncertaintiesincase coefficients(Fukuietal.2016). offixedvariousimpactparameterforeach band We fix the orbital eccentricity to zero and Filter Impactparameterb Rp/Rs the limb-darkening parameters to the values from g′ 0.97 0.273+0.024 2 −0.026 Claret, Hauschildt, & Witte (2012), {u1, u2} = 1.05 0.342+0.025 −0.027 {0.8067, 0.0861}, {0.8423, −0.0160}, {0.2946, 0.3569} 1.18 0.451±0.028 fortheg2′-,r2′-,andzs,2-bands. Inaddition,weputaGaussian r2′ 0.97 0.205+−00..001112 prior for a/Rs = 1.685±0.064, based on the value of van 1.05 0.270±0.012 Eykenetal.(2012). 1.18 0.376+−00..001123 Forchoosing the most appropriate combination of freepa- zs,2 0.97 0.1427+−00..00008962 1.05 0.2057+0.0087 rameters,weoptimizetheparametersusingtheAMOEBAalgo- −0.0092 1.18 0.3099+0.0086 rithm(Pressetal.1992)andevaluatetheBayesianInformation −0.0090 Criteria (BIC: Schwarz 1978). The BIC value is defined by BIC≡χ2+klnN, wherek isthenumberoffreeparameters, of theparameters between 15.87% and 84.13% of themerged andNisthenumberofdatapoints.WecalculatetheBICvalues posteriordistributions. foreachlight curveandparameter,thenwepickoutthecom- binations tothe minimum BICvalue foreachband. For{X}, 4 Results wetestdifferentcombinations ofthetimet,thesquareoftime t2,theairmassz,andtherelativestellarpositions ontheCCD Table 1 shows the best-fit transit parameters and uncertainties ∆x,∆y.BasedonminimumBIC,weadoptk0,ktforallbands. obtainedbytheMCMCanalysis.Notethatweobtainconsistent Totakeintoaccountthetime-correlatednoise(so-calledred resultswhenwefitthelightcurvesthatareproducedbydiffer- noise; e.g. Pont et al. 2006; Winn et al. 2008), we multiply entbaselinemodelswithcomparableBICvalues. Weshowthe eachfluxuncertaintybythered-noisefactorβwhichistheratio transitlight curvesandthebest-fitmodelsofeachobservation oftheobservedstandarddeviation ofthebinnedlightcurveto inFigure1. theexpectedstandarddeviationoftheunbinnedandnon-time- van Eyken et al. (2012) and Yu et al. (2015) reported that correlatedlightcurve. Thebinningsizesarebetween5and20 the fading depth of CVSO 30 changes with the observational minutes. Weobtainthemedianofβ foreachbinning sizeand epoch. AccordingtoYuetal.(2015),thelossoflightwas20- multiply the median β by the uncertainty of each data. The 30%largerinthebluerbandon2012Dec. 14atr′-andI+z- typicalphotometricerrorsincludingβare2.1%,0.87%,0.54% band,on2014Jan. 9and2014Jan. 18ati′-andg′-band,and fortheg2′-,r2′-,andzs,2-bands,respectively. on2014Jan. 19atI+z-andH-bandrespectively. However, Afterthat,toestimatetheuncertaintyofthefreeparameters, the loss of light in r′ was essentially the same as in I+z on weanalyzethechosenlightcurvebytheMarkovChainMonte 2012Dec.15.Wepresentthefadingdepthing2′-,r2′-,andzs,2- Carlo(MCMC)methodfollowingNaritaetal.(2013)andFukui bandsobservedsimultaneously. Figure2givesthewavelength etal.(2016).Wefirstanalyzeindependentlythelightcurvesfor dependenceofRp/Rs.Thetoppanelshowsthebest-fitparam- eachband,andafterthatwejointlyanalyzeallthelightcurves. etersforRp/Rs andtheiruncertainties foreachbandinTable We make the MCMC chain with 107 steps and first106 steps 1. Theuncertainties arestronglyinfluenced bytheimpactpa- areexcludedasburn-in.Wedefine1σuncertaintiesastherange rameterbwhichisgrazing.WerecalculatetheRp/Rsandtheir 4 PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 1.04 g’2 r’2 zs2 1.02 Relative flux 0.9 18 0.96 0.94 1.04 g’2 r’2 zs2 1.02 Relative flux 0.9 18 0.96 0.94 0.04 Residuals- 00..00 022 -0.04 -0.05 0 0.05 0.1 -0.05 0 0.05 0.1 -0.05 0 0.05 0.1 BJD - 2457428 BJD - 2457428 BJD - 2457428 Fig.1.Toppanels:ThegraydotsaretherawlightcurvesofCVSO30observedbyg2′-,r2′-,andzs,2-bandfromtheleft.Theblackopencirclesare0.01days binneddata.Thesolidlinesarethebest-fittransitmodels.MiddlePanels:Thelightcurvescorrectedbythebaselinecorrection.Bottompanels:Theresiduals betweentheobserveddataandthebest-fitmodel. uncertainties fixing the impact parameter at the median and 1 σupper/lowerlimitb={0.97,1.05,1.18} inordertohighlight 0.5 thewavelengthdependenceofRp/Rs(Figure2:bottompanel; 0.45 Table2).Astheresult,wefindthattheclearwavelengthdepen- 0.4 denceinRp/Rsisapparentregardlessofthevalueofb. 0.35 R/Rps 0.3 0.25 5 Discussion 0.2 EachofCVSO30’sfadinglightcurveshapesvariesintheob- 0.15 servational epoch, with someshowing largefading and others 0.1 showingsmallfading(vanEykenetal.2012).Therefore,multi- 400 500 600 700 800 900 1000 Wavelength [nm] colorsimultaneousobservationsarenecessarytodiscusswave- 0.5 lengthdependenceoflightcurves.Thepreviousmulticolorob- b = 0.97 0.45 b = 1.05 servations are performed in two bands (Yu et al. 2015; Raetz b = 1.18 0.4 etal.2016). Inordertorevealprecisewavelengthdependence, 0.35 iwselaorbgseerrvaetisnhtohrrteeerbwaanvdeslesnimgtuhlst,an4e0o-u9s0l%y. Tlahregearppfaorreng2t′R−pz/sR,2s, R/Rps 0.3 and20-50%largerforr2′ −zs,2.Now,weconsiderwhetherthe 0.25 0.2 cloudlessatmospherecanexplainthiswavelengthdependence. TheatmosphericscaleheightHiswrittenas 0.15 0.1 H= kBT (2) 400 500 600 Wavele 7n0g0th [nm] 800 900 1000 µg wherekB istheBoltzmannconstant,T istheatmospherictem- rF2′ig-,.a2n.dTozps,2p-abnaenl:dTfrhoembTeasbtl-efit1p.aBroatmtoemtepraannedl:uTnhceerwtaaivnetylenogftRhpd/eRpesnidnegn2′c-e, perature,µisthemeanmolecularweightwhichisµ≈2.3for ofRp/Rsattheimpactparameterfixedbyb={0.97,1.05,1.18} H/He-dominatedatmosphere(e.g. deWit&Seager2013),and PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 5 gisthelocalgravity.Weassumethattheplanetcandidateequi- lfirbormiumuptpeemrpliemraittuorfeCofia1r8d0i0etKa,l.th(2e0p1l5an),etthareypmlaansestaorfy0r.a9dMiusJuopf 1 .10.0051 zgrs’’,222---bbbaaannnddd x 1 iR2s.8⊙23R(0BJ0ruipckemfn˜rooomert0Ra.l0p.0/22R030s5Ro).fp.tThhiTsenhw,eortehrfkeorcaean,ldctuhsletaetlveladarrisarcataidolienuhsbeoeigftwh1te.3eHn9 Relative Flu 00 ..099.899559 ther2′-andthezs,2-bandcorrespondsto30H andthatbetween 0.98 theg2′-andthezs,2-bandis60H. Incomparison,thevariation 0.975-0.05 0 0.05 0.1 0.15 0.2 of HD 189733b from Sing et al. (2011, Fig. 14), the radius BJD-2457428 variation of HD 189733b between 630 nm and 880 nm corre- Fig.3.Themodellightcurveincludedgravity-darkeningeffect. sponding to the r2′- and the zs,2-band is 1.5 H, between 490 nm and 880 nm corresponding to the g2′- and the zs,2-band is Table3.Comparisonbetweentheobserveddepthandthe 2.5 H. In addition, we compare the wavelength dependence gravity-darkenedtransitmodeldepth withcloudless RayleighscatteringfollowingSouthworth etal. Filter observeddepth[%] gravity-darkenedmodeldepth[%] (2015). Theslopeoftheplanetary radiusdepending onwave- g′ 3.0811+0.0151 1.98 2 −0.0035 lengthasafunctionisexpressedas r′ 1.7270+0.0108 1.89 2 −0.0025 zs,2 1.0191+−00..00008119 1.59 αH= dRp(λ) (3) dlnλ whereαisapower-lowcoefficient(α=−4forRayleighscat- ingdepthsistoolargeandcannotbeexplainedbythegravity- tering), and λ is wavelength. The corresponding differential darkeningeffectalone. radiusis63000kmforther2′-bandvsthezs,2-bandand130000 Thecandidateoriginsofthefadingeventsexceptagasgiant km for theg2′-bandvs thezs,2-band. This result yields that α proposed by Yu et al. (2015) are starspots near the rotational is -80 to -100. Therefore, the wavelength dependence of the pole,andorbitingoraccretingdust.AccordingtoGrankinetal. CVSO30’sfadingeventistoolargetobeexplainedbytheat- (2008), weak-line T-Tauristarshave stable long-term periodic mosphericRayleighscatteringofagasgiantplanet. variability for several years by starspots and stellar rotation. We also discuss the influence of gravity darkening (von Suchlong-termstabilityis,however,theresultofstarspotmod- Zeipel 1924). Barnes et al. (2013) and Howarth (2016) ex- ulation on so-called active longitudes despite shorter lifetime plained the changes of the shape of transit light curve with (weeks)of eachstarspot. CVSO30hasbeenobserved todis- gravity darkening. The intensity distribution on the gravity- playtransit-likefadingeventsoversixyearssincethefirstob- darkenedstarvarieswithobservingwavelengths,andtherefore servationsbyvanEykenetal.(2012). Thestarspotsasacause the transit light curves have wavelength dependence (Barnes offadingeventsareunlikelybecauseitisdifficultforthespots 2009). Now,wetestwhetherthewavelengthdependenceisex- toexistnearthepoleatalltimes. plainableintermsofgravity-darkeningeffect.Wecalculatethe The remaining possibility for the wavelength dependence g2′-, r2′-, and zs,2-band modellight curvewith gravity darken- wouldbeinfavorofatransitingdustclump. Asanexampleof ing in the condition that thelargest wavelength dependence is dustwitharockyplanet,Rappaportetal.(2012)foundthatthe expected.Thederivationoftheintensitydistributionisobtained shapeoftransitlightcurvesofKIC12557548changesintime. bynumericalintegrationwiththeformulabyBarnes(2009).We In another example of a disintegrating planet, Sanchis-Ojeda assume the strongest gravity darkening case, the stellar obliq- et al. (2015) signified the wavelength difference of the tran- uity90◦ pole-onorbit, theimpactparameter0,Rp/Rs=0.11 sit depth by spectro-photometric observation in K2-22b. The to approximate the observed fading depth in the r′-band. We exponent of the our extinction power law which is defined as 2 alsofixa/Rs withthebest-fitparameterinTable1,limbdark- −dlnA/dlnλ,whereAisfadingdepthobtainedby(Rp/Rs)2, ening parameter with the same value in Section 3, the stellar is1.7±0.8. Thisvalueissimilartotheexponentoftheextinc- rotationalvelocitywith120km/sobtainedbythestellarradius tion by interstellar medium 2.13±0.08 obtained by Damineli andtherotationalperiodinvanEykenetal.(2012). etal. (2016). Thecandidate sources ofdust include adisinte- Thederivedgravity-darkenedmodellightcurveisshownin gratingrockyplanet,acircumstellardisk,andanoccultationof Figure 3. The transit depths with gravity darkening are2.0%, accretionhotspot. 1.9%,1.6%fortheg2′-,r2′-,andzs,2-bands,respectively(Table 3). Thewavelengthdependencecausedbygravitydarkeningis 6 Conclusion weak and not able to reproduce the observed depths of 3.1%, 1.7%, 1.0% for the g2′-, r2′-, and zs,2-band, respectively. In Wehaveobservedthetransit-likefadingeventoftheweak-line other words, the observed wavelength dependence of the fad- T-Tauri star CVSO 30 in the g2′-, r2′-, and zs,2-bands simulta- 6 PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 neously for the first time, using the MuSCAT instrument on Ohta,Y.,Taruya,A.,&Suto,Y.2009,ApJ,690,1 the 188 cm telescope at Okayama Astrophysical Observatory. Pont,F.,Zucker,S.,&Queloz,D.2006,MNRAS,373,231 Weperformthelightcurvesfittingusingtransitmodelwiththe Press,W.H.,Teukolsky,S.A.,Vetterling,W.T.,&Flannery,B.P.1992, NumericalrecipesinFORTRAN.Theartofscientificcomputing independent Rp/Rs, thesamea/Rs, andthesameimpactpa- Raetz,S.etal.2016,MNRAS,460,2834 rameterforeachband.Wehavedetectedsignificantwavelength Rappaport,S.etal.2012,ApJ,752,1 dependenceinCVSO30’sfadinglightcurve.Theresultoftran- Sanchis-Ojeda,R.etal.2015,ApJ,812,112 sitlightcurvefittingshowsthelargewavelengthdependencein Schwarz,G.1978,Ann.Statist.,6,2,461 transit depths of 3.1%, 1.8%, 1.1% for the g2′-, r2′-, and zs,2- Siess,L.,Dufour,E.,&Forestini,M.2000,A&A,358,593 bands, respectively. The wavelength dependence rules out a Sing,D.K.,etal.2011,MNRAS,416,1443 transiting gas giant scenario because of being too large to be Southworth,J.etal.2015,MNRAS,447,711 duetoahydrogen-dominatedatmosphereofahotJupiterorthe vanEyken,J.C.etal.2012,ApJ,755,42 vonZeipel,H.1924,MNRAS,84,665 gravity-darkeningeffect.Inaddition,thestarspotsasacauseof Winn,J.N.etal.2008,ApJ,683,1076 fadingeventsareunlikelybecauseitisdifficultforthespotsto Yu,L.etal.2015,ApJ,812,48 existseveralyearsnearthepoleatalltimes. Thusourresultis infavoroftransitbycircumstellardustclumporoccultationof anaccretionhotspotwhichwereintroducedbyYuetal.(2015). Acknowledgments TheauthorsthankYasunoriHoriforfruitfuldiscussions. A.F.andT.H. is supported by the Astrobiology Center Project of National Institutes of Natural Sciences(NINS) Grant Numbers AB281012 and JY280092. N.N.acknowledgesasupportbyGrant-in-AidforScientificResearch(A) (JSPSKAKENHIGrantNumber25247026). Thisworkwassupported byJSPSKAKENHIGrantNumbers16K13791and16K17660. M.T.is partlysupportedbyJSPSKAKENHIGrantNumber15H02063. References Baraffe,I.,Chabrier,G.,Allard,F.,&Hauschildt,P.H.1998,A&A,337, 403 Barnes,J.W.2009,ApJ,705,683 Barnes,J.W.,vanEyken,J.C.,Jackson,B.K.,Ciardi,D.R.,&Fortney, J.J.2013,ApJ,774,53 Bricen˜o, C., Calvet, N., Herna´ndez, J., Vivas, A. K., Hartmann, L., Downes,J.J.,&Berlind,P.2005,AJ,129,907 Ciardi,D.R.etal.2015,ApJ,809,42 Claret,A.,Hauschildt,P.H.,&Witte,S.2012,A&A,546,A14 Damineli,A.,Almeida,L.A.,Blum,R.D.,Damineli,D.S.C.,Navarete, F.,Rubinho,M.S.,&Teodoro,M.2016,MNRAS,463,2653 deWit,J.,&Seager,S.2013,Science,342,1473 Eastman,J.,Siverd,R.,&Gaudi,B.S.2010,PASP,122,935 Fukui,A.etal.2011,PASJ,63,287 Fukui,A.etal.2016,ApJ,819,27 Grankin,K.N.,Bouvier,J.,Herbst,W.,&Melnikov,S.Y.2008,A&A, 479,827 Howarth,I.D.2016,MNRAS,457,3769 Johns-Krull,C.M.etal.2016,ApJ,830,15 Kamiaka,S.etal.2015,PASJ,67,94 Mandel,K.&Agol,E.2002,ApJL,580,L171 Narita,N.,Nagayama,T.,Suenaga,T.,Fukui,A.,Ikoma,M.,Nakajima, Y.,Nishiyama,S.,&Tamura,M.2013,PASJ,65 Narita,N.etal.2007,PASJ,59,763 Narita,N.etal.2015,JournalofAstronomicalTelescopes,Instruments, andSystems,1,4,045001

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.