ebook img

Multi-Chroic Feed-Horn Coupled TES Polarimeters PDF

5.9 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multi-Chroic Feed-Horn Coupled TES Polarimeters

JournalofLowTemperaturePhysicsmanuscriptNo. (willbeinsertedbytheeditor) J.McMahon1 · J.Beall2 · D.Becker2,3 · H.M. Cho2, R. Datta1 · A. Fox2,3 · N. Halverson3 · J.Hubmayr2,3 · K.Irwin2 · J. Nibarger2,3 · M.Niemack2 · H.Smith1 Multi-Chroic Feed-Horn Coupled TES Polarimeters 2 1 07.31.2011 0 2 n Keywords mm/sub-mmwavebolometersforastronomy,THzapplications a Abstract Multi-chroicpolarizationsensitivedetectorsofferanavenuetoincrease J both the spectral coverage and sensitivity of instruments optimized for observa- 0 tionsofthecosmic-microwavebackground(CMB)orsub-mmsky.Wereporton 2 an effort to adapt the Truce Collaboration horn coupled bolometric polarimeters ] foroperationoveroctavebandwidth.Developmentisfocusedondetectorsoperat- M inginboththe90and150GHzbandswhichofferthehighestCMBpolarization toforegroundratio.Weplantodeployanarrayof256multi-chroic90/150GHz I . polarimeterswith1024TESdetectorsonACTPolin2013,andthereareproposals h to use this technology for balloon-borne instruments. The combination of excel- p - lent control of beam systematics and sensitivity make this technology ideal for o futureground,ballon,andspacemissions. r t PACSnumbers:95.75.Hi,95.85.Bh,95.85.Fm,98.80.Es s a [ 1 Introduction 2 v MeasurementsoftheCMBareprogressingrapidly1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 yet 4 manyfaintsignals,containingrichcosmologicalinformation,remainunmeasured. 2 Sensitive observations of CMB polarization will provide information about the 1 4 energy scale of inflation (from the large angular scale power spectrum) as well . astightmeasurementsofneutrinomassesandearlydarkenergy(throughgravita- 1 tionallensing).Recoveringthesesignalsrequiresinstrumentswithhighsensitiv- 0 2 ity,excellentcontrolofsystematics,andmulti-wavelengthcoveragetodealwith 1 foregrounds. : v 1:DepartmentofPhysics,UniversityofMichigan,AnnArbor,MI48109,USA i E-mail:[email protected] X 2:NationalInstituteofStandardsandTechnology,Boulder,CO80305,USA r 3:UniversityofColorado,Boulder,CO80309 a 4:DepartmentofAstrophysicalSciences,UniversityofColorado,Boulder,CO,80309,USA 2 Detector array concept Detector array Polarimete r TES (X-pol) polarization splitter (OMT) TES (Y-pol) band-pass filters Fig.1 Left:TheassemblyofasinglefrequencyTrucedetectorarray.Thearraywillconsistof asiliconmicro-machinedplateletarrayofcorrugatedfeedhornsaboveadetectorwaferanda micro-machinedbackshortwafer.Theassemblyoffeedhorns,detectorarrayandthebackshort waferareseparatedinthisdiagramforclarity.Center:Photographofaprototypehornarray (top)andprototypedetectorwafer(bottom).Right:Zoomedinphotographofasingledetector inanarray.ThemajorcomponentsarelabeledincludingtheplanarOMT,thestubfilters,and theTESislands. Sensitivity and spectral coverage can be improved by detecting multiple fre- quencybandsineachpixel(multi-chroicdetectors).In§2wedescribeourefforts toextendtheTrucefeedhorn-coupledpolarimetertoaccommodatemultiplewide bands. This architecture offers excellent control of beam systematic effects and polarization axes that are independent of frequency. In §3 we describe plans to field an array of these detectors as part of the ACTPol experiment. We conclude in§4. 2 Multi-ChroicDetectors Themulti-chroicarraysunderdevelopmentareanextensionofthesingle-frequency Truce detectors16. (See Figure 1) The optical beam is defined by a corrugated feedhorn,whichhasalonghistoryofuseinpolarimetersinradioastronomyand CMB observations. Corrugated horns offer low sidelobes, circularly symmetric beamsandalowcross-polarizationoverawidebandwidth—idealcharacteristics foruseinpolarimetry.Thewaveguideoutputofthehorncouplestoaplanarortho- mode transducer (OMT)17 which separates the orthogonal polarization compo- nents of the incoming radiation into independent co-planar waveguides (CPW). TheOMTdefinesapolarizationaxisthatisindependentoffrequency.EachCPW transitions to a microstrip (MS) transmission line using a numerically optimized stepped impedance transformer. The signals then pass through a set of resonant MSstubfilterswhichdefinethespectralpass-bandofthedetectors. Oncefiltered,theincidentpowerforeachpolarizationisdissipatedonasus- pendedandthermallyisolatedsiliconnitride(Si N )islandusinglossygoldMS 3 4 terminations,andthecorrespondingtemperaturechangeofthis‘bolometerisland’ isdetectedbyaMoCutransitionedgesensor(TES).Summingtheoutputsofthe two bolometers yields the temperature of the incoming radiation, and differenc- ing the two yields the Stokes Q parameter. The full linear polarization state of a givenlocationontheskycanbemeasuredbycombiningmeasurementsofmulti- plepolarimetersrotatedrelativetoeachother,orbyobservingtheskyatmultiple parallacticangles. 3 simulated performance multi-chroic detector masks 20 90% coupling diplexer ar coupling m(pr9puell0iamti s-iGncsahrbHyr idacze nOsigMdn)T 1p5a0ss GbHanzd 1105sky brightess te b1omlommeter co-pol 0.5 mm H2O 5 mperature [K] 0 broad-band OMT 180º Hybrid Tee frequency [GHz] Fig.2 Left:Thelayoutforamulti-chroicpixel.Lightinbothfrequencybandscouplesontothe OMT(center)beforethefieldsfromeachfinarecarriedtotheinputdiplexers,whichsplitthe radiationwithineachbandintoseparateMSlines.Theselinespassthroughacross-overbefore beingcarriedintotheinputsof180◦hybridtees.Signalsfromunwantedwaveguidemodesare sent to the ‘sum’ port (closest to the OMT) where they are terminated in gold resistors. The desiredTE11modeisroutedtoabolometerwhereitthesignalisdetected.Right:Thesimulated performanceofthissystemasafunctionoffrequency.Theredcurveshowsthecouplingofthe OMTfinswhichisabove95%averagedovereitherband.Thegreenandbluecurvesshowthe passband of the two diplexer outputs. Cross-polarization (not shown) is below 1%. The gray curveshowsasimulationoftheatmosphericemissionatzenithattheACTsite,highlighting thatthesebandsarewellmatchedtotheatmospherictransmissionwindows. Withafewchangesthesedetectorscanbeextendedtooctave(1:2)bandwidth. Octavebandwidthissufficienttoallowsimultaneousoperationatboththe90and the 150 GHz frequency bands which lie on either side of the polarization fore- groundminimum,makingthesethemostsensitivefrequenciesforCMBpolariza- tionstudies. Figure2showsthedetectorlayoutforamulti-chroic90/150GHzpixelusing a broader-band OMT based on Knchel and Mayer (1990)18. The four OMT fins feed diplexers that split the 90 GHz and 150 GHz bands into separate MS lines. These diplexers are based on the resonant stub filters that are used in the single frequency detectors which have consistently matched simulations at the percent level. The outputs of the diplexers from opposing arms of the OMT are fed into theinputsof180◦ hybridteedesignedfollowing19,oneforeachfrequencyband andpolarizationstate.Thisteecombinesthesignalsfromthetwolinestoproduce a sum and a difference output, with the sum output terminated and the differ- enceoutputroutedtoabolometerislandfordetection.Thehybridteeisimportant because circular waveguide is multi-moded over octave bandwidth. The desired TE-11modecouplestooppositeprobeswitha180◦ relativephaseshift(selected bythedifferenceoutputofthehybridtee),whileallothermodesoverthisband- width which couple to the probes are in phase (and thus terminated at the sum output).Simulationsshowthe180◦ hybridrejects99.9%oftheunwantedmodes with>99%transmissionofthedesiredTE-11mode.Thisestablishessinglemode performance over the full bandwidth (1:2.2), which is crucial to maintaining ex- cellentpolarizationperformanceinthissystem.Intotal,fourbolometersareused todetectbothlinearpolarizationsinthetwobands. 4 ring loamodeded converter protoltoyapde erid nlga yers dB] 〈90 GHz〉 xEH-pol e [ ns o 〈150 GHz〉 p es r angle [º] Fig.3 Left:Adrawingofapreliminaryhorndesignincorporatingringloadedslots.Thezoom showsthegeometryofthering-loadedgroovesmoreclearly.Threephotographsshowprototype layersetchedusingathreelayermaskandadeepreactiveion-etch(DRIE)machine.Right:The predictedband-averagedbeampatterninboththe90and150GHzbands.Thesepatternswere constructed by simulating the beam pattern at 5 GHz increments and averaging these results within the predicted detector passband. These simulations showed the input reflection to be below-20dBandthecross-polarizationbelow-30dBacrossbothbands. While standard corrugated horns do not offer sufficient bandwidth for these multi-chroicdetectors,designsincorporatingring-loadedslotshavedemonstrated excellent performance for such applications20,21. Figure 3 shows the design and simulations for such a horn. It achieves input reflection below 1% and produces symmetricbeamswithpeakcross-polarizationbelow-30dBovertheentireband, from 80 to 160 GHz. This design is similar to a standard corrugated feed, but with the addition of ring-shaped cavities for the first 5 grooves. Prototype ring loaded layers have been fabricated using the NIST deep ion etch process23 with depthscontrolledto∼7micronaccuracy,comparabletothetoleranceofthestan- dard electroforming technique. This silicon platelet array technology may prove tobethemosteconomicalmethodforproducinglargearraysofring-loadedhorns whichareotherwisedifficulttomanufactureatmm-wavefrequencies. Alldetectorcomponentshavebeenfullycharacterizedusingthesamesimula- tion tools (HFSS: www.ansoft.com and Sonnet: www.sonnetsoftware.com) used andextensivelyvalidatedinthesinglefrequencydevelopment.Thesesimulations combinedwithestimatesfordielectriclossespredictanopticalcouplingefficiency of >70%, polarization leakage below 1% and excellent cross-polarization from thecorrugatedhorn. 3 Multi-ChroicDetectorsonACTPol As originally proposed, the ACTPol receiver was designed to use three single- frequency lens-fed arrays of 512 polarimeters (see Niemack et al 201022). Each arrayismountedinan‘opticstube’whichcontainsofasetofthreesiliconlenses that re-image light from the telescope onto the cryogenic detector array; a cold Lyot stop to control illumination of the primary mirror; and filters to block in- fraredradiation.Thedetectorsarereadoutbytime-domainmultiplexing(TDM) 5 2-layer silicon AR coating AR coating prototype 150 GHz lens with curved surface cross-section 90 GHz 150 GHz 1% frequency [GHz] Fig.4 Left:PhotographicimagesshowingatopandsideviewofatwolayerARcoatingfor siliconconstructedbycuttingsub-wavelengthpostswithadicingsawonacurvedlenssurface. Right:Thepredictedreflectionfromthissurfaceasafunctionoffrequencybetween80and160 GHz.Theredcurveshowsthereflectionforthiscoatingdesign.Thethinblueandgreencurves showtheperformance,includingestimatesforthemeasuredmachiningerrors. electronics provided by NIST24, and are controlled by room temperature Multi- Channel Electronics25, the same readout and control system used for ACT. The ACTPolscheduleistodeploya150GHzarrayinearly2012followedbyasecond 150GHzarrayandathirdarrayin2013.Weplantodeployathirdarrayconsisting of90/150GHzmulti-chroicdetectorsinsteadoftheoriginallyplanned220GHz array. Thesensitivityofasingledetectorimprovesasthehornaperturegrowslarger. For an array fabricated on a fixed diameter wafer (6(cid:48)(cid:48) silicon in this case), as the hornsizegrowslarger,thenumberofdetectorsdecreases.Thisleadstoaparticular number of horns (and horn size) that maximizes the array sensitivity. Detailed calculationswereperformed,includingamodelofthetelescopeandatmospheric loading, consideration of bandwidth, and conservative estimates for the optical coupling. This calculation, subject to the constraint of using the existing 1024 channel readout, revealed that 256 detectors was the optimal choice. With this choicethearraysensitivityisequivalenttoanoptimal90GHzarrayand70%of a 150 GHz-only array. This provides a significant boost in sensitivity compared withtheoriginallyplanned220GHzarray.Wenotethatthetotalarraysensitivity couldbefurtherincreasedifwewerenotsubjectedtotheconstraintofusingthe existingreadout. The input to this array must pass through a set of silicon lenses. We are de- veloping a novel anti-reflective (AR) coating for the silicon lenses. This ‘coat- ing’ consists of a two layer simulated dielectric layers constructed by removing grooves in two directions using a dicing saw to leave stepped pyramids on the lens surface. Figure 4 shows a prototype of this coating on a curved surface and its simulated bandwidth. This design offers extremely low loss and reduces re- flections from each silicon surface below 1% across a bandwidth of 1:2, which is sufficient for these multi-chroic pixels. Metrology of the fabricated geometry show(cid:46)5microndeviationsfromthedesign,withintherequiredtolerance. 6 4 Conclusions WehavedescribedourplansforextendingtheTrucesinglefrequencyhorncou- pledTESpolarimeterstoachievemulti-chroicperformance.Wewillinitiallyde- velopdetectorswithsensitivityinthe90and150GHzbandswhereCMBpolar- ization foregrounds are lowest. In the future, this architecture will be scaled to higherandlowerfrequenciestopursueavarietyofsciencegoals.Thisapproach retainstheadvantagesofhorncoupledpolarimetersincludingsymmetricbeams, low cross-polarization, and frequency independent detector polarization angles while enhancing sensitivity and frequency coverage. We plan to deploy an array ofthesedetectorsaspartoftheACTPolprojectin2013.Thiswillserveasatech- nologydemonstrationandenhanceACTPol’ssensitivitytoCMBpolarizationand gravitationallensing. Acknowledgements WewouldliketothankthemembersoftheTrucecollaborationfortheir manycontributionstothisarchitecture. References 1. C.L.Reichardt,etal. ApJ,694:1200–1219,April2009. 2. J.Fowleretal. 2010. 3. SudeepDasetal. Astrophys.J.,729:62,2011. 4. H.C.Chiang,etal.. ArXive-prints,June2009. 5. F.Piacentini,etal. ApJ,647:833–839,August2006. 6. T.E.Montroy,etal. ApJ,647:813–822,August2006. 7. C.Bischoff,etal.. ApJ,684:771–789,September2008. 8. J.L.Sievers,etal. ApJ,660:976–987,May2007. 9. E.M.Leitch,etal. ApJ,624:10–20,May2005. 10. Jiun-HueiP.Wuetal. ApJ,665:55–66,2007. 11. M.L.Brown,etal. ArXive-prints,June2009. 12. C.Bischoff,etal. ArXive-prints,December2010. 13. M.Luekeretal. 2009. 14. R.Keisleretal. 2011. 15. M.R.Nolta,etal. ApJs,180:296–305,February2009. 16. K. W. Yoon, et al. In B. Young, B. Cabrera, & A. Miller, editor, American Institute of PhysicsConferenceSeries,volume1185ofAmericanInstituteofPhysicsConferenceSe- ries,pages515–518,December2009. 17. J.McMahon,etal. InB.Young,B.Cabrera,&A.Miller,editor,AmericanInstituteof PhysicsConferenceSeries,volume1185ofAmericanInstituteofPhysicsConferenceSe- ries,pages490–493,December2009. 18. R. Knchel and B. Mayer. In IEEE MTT-S International Microwave Symposium Digest, Dallas,pages471–474,1990. 19. P.K.Grimes,O.G.King,G.Yassin,andM.E.Jones. InElectronicsLetters,Vol43,Issue 21,pages1146-1147,2007. 20. Y.TakeichiandF.Takeda.InMicrowaveSymposiumDigest,GMTTInternational,Volume 71,Issue1,pages36–37,May1971. 21. FennSrikanth,Ruff. EVLAMemo95,2005. 22. M.Niemacketal. SPIEConferenceSeries,volume7741,july2010. 23. J. Bhardwaj and H. Ashraf. SPIE Conference Series, volume 2639, pages 224–233, September1995. 24. P.A.J.deKorte,etal. ReviewofScientificInstruments,74:3807–3815,August2003. 25. E.S.Battistelli,etal. JournalofLowTemperaturePhysics,151:908–914,May2008.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.