ebook img

Multi-Antenna System Performance and Impairments in Long Term Evolution Radio Access PDF

268 Pages·2013·3.54 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multi-Antenna System Performance and Impairments in Long Term Evolution Radio Access

Multi-Antenna System Performance and Impairments in Long Term Evolution Radio Access Networks using the Extended Spatial Channel Model by MichelChauvin,B.Eng. Athesissubmittedtothe FacultyofGraduateandPostdoctoralAffairs inpartialfulfillmentoftherequirementsforthedegreeof MasterofAppliedScienceinElectricalandComputerEngineering Ottawa-CarletonInstituteforElectricalandComputerEngineering(OCIECE) DepartmentofSystemsandComputerEngineering CarletonUniversity Ottawa,Ontario October,2013 (cid:2)cCopyright MichelChauvin,2013 Abstract Consumer demand for rich content delivered to portable wireless devices is pushing the wireless industry and researchers to find ways to improve the efficiency of wireless net- works. New technologies like LTE and LTE-Advanced are being refined and deployed to meetdemands. Thisthesisstudiesthreeimportantareasofwirelesscommunicationsusing LTE; phase noise, Doppler and link adaptation and the performance of various multiple antenna systems. The thesis focuses on the performance of 4 base station antennas and results obtained with the advanced 3rd Generation Partnership Project’s (3GPP) extended spatial channel model (SCME). Simulations show the effect of each impairment and con- figuration on the LTE physical downlink shared channel. The best performing antenna configuration evaluated is the 4-transmitter, 4-port, correlated cross-polarized BS antenna whenTM4’sclosed-loopspatialmultiplexingisused. Theresultsshowthata4antennaBS setup provides gain over 2 BS antennas, despite the additional reference signal overhead, due to the greater set of precoding matrices available with 4 antenna ports. When only 2 ports are available, TM3’s open-loop spatial multiplexing (OLSM) performs better than TM4 as the user equipment (UE) becomes mobile, since 2-port TM3 is less dependent on the channel state information. The practical implementation issues of link adaptation are shown to cause a significant drop in throughput at medium and high UE velocities. The resultsinthethesissuggestthatimprovingthelatencyofthelinkadaptationloopwithlow complexity algorithms, or an increase in processing power, along with adaptive link adap- tation reporting intervals can keep uplink overhead low and maintain a higher throughput as velocity increases. The UE velocity is also pushed to extremes in the high speed train on railway simulations and shows that LTE can operate with some throughput degradation at 350 km/hr. Finally, the LTE downlink is also subjected to phase noise; an important impairment present in communication systems employing up/down-conversion. The gen- eratedphasenoiseandthemeasuredphasenoisesimulationsshowtheeffectofphasenoise onthethroughput. Asexpected,therelativelyquietmeasuredphasenoisedoesnotsignifi- cantlydegradetheLTEdownlink. iii Acknowledgments I would like to thank my supervisor Prof. M. El-Tanany for his friendship and the genuine guidance he provided when I would ask for his help. He unselfishly lent me his time for any questions I had and occasional unrelated discussions about topics that interested us both. He provided encouragement along the way and allowed me to explore additional areas to satisfy my curiosity despite the extra time it would take to complete my thesis work. I’m very grateful for the opportunity he gave me to learn a new field, work on an interestingtopicandmeetanumberofwonderfulpeoplealongtheway. I would also like thank my co-workers and mentors at Ericsson who often made themselves available (at any time) to discuss projects on which we were working. They inspired me since they had a tremendous amount of passion for the work they were performing. Thank you to Edward, Ahmed, Guoqiang, Jianguo, Eliana, Xiaoming, Alireza, Jianfeng and my cubicle neighbour, Sara, for the wonderful conversations and the opportunity to learn and work with you. Thank you to Ericsson for supporting this thesis workandgenerouslyallowingmetoworkontopicsofinterestandtheopportunitytowork andconversewiththehighlyskilledpeopleintheSystemsteam. Thereisnothingmoreimportantthanfamily andtheyaretheonesthatinspireyouand nurture curiosity from a very young age. Thank you to my parents, Cathy and Richard, who have helped me through challenging times and this most recent academic endeavor. They have shown time and time again their support, shared their wisdom and I’m forever gratefulfortheopportunitytoexploreanewfield. Tomywonderfulandsupportivefamily Eric, Natalie, Michael and Kaitlin, Rolande, Lise and Tony, thank you for your endless supportandencouragement. To all the friends (Hamid, Wang, Hussein, Farouk, Rudhwan, Furkan, Xiao, Matthias, Majid, Rania and many more) that I met in classes or elsewhere during our graduate iv studies,yourfriendshipmadethisanunforgettableexperience. Ihopethatyouwillallfind work that you are passionate about as I truly believe you will all have a big impact on the worldoneday. v Table of Contents Abstract iii Acknowledgments iv TableofContents vi ListofTables x ListofFigures xiii ListofSymbols xix ListofAcronyms xxiii 1 Introduction 1 1.1 TheWirelessRadioAccessNetworks . . . . . . . . . . . . . . . . . . . . 2 1.2 LTERadioAirInterface . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 WirelessChannels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.1 PathLoss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.2 Fading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.3 TransmitandReceiveDiversity: (MISO)and(SIMO)Channels . . 6 1.3.4 Multiple-InputMultiple-Output(MIMO)Channels . . . . . . . . . 6 1.3.5 SpatialChannelModels(SCM) . . . . . . . . . . . . . . . . . . . 8 1.4 LongTermEvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4.1 OrthogonalFrequencyDivisionMultiplexing(OFDM) . . . . . . . 8 1.4.2 LinkAdaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 ThesisMotivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.6 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 vi 1.7 ThesisContributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.8 OrganizationoftheThesis . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Background 14 2.1 WirelessFadingChannels . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.1 PathLossandShadowing . . . . . . . . . . . . . . . . . . . . . . 14 2.1.2 Multi-PathPropagationandSmall-ScaleFading . . . . . . . . . . . 15 2.1.3 FrequencyFlatandFrequencySelectiveChannels . . . . . . . . . 19 2.2 OrthogonalFrequencyDivisionMultiplexing(OFDM)Systems . . . . . . 22 2.2.1 OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.2 CyclicPrefix(CP) . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3 ChannelModeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.1 MotivationforChannelModels . . . . . . . . . . . . . . . . . . . 25 2.3.2 SingleInputSingleOutput(SISO)WirelessChannel . . . . . . . . 25 2.3.3 Multi-InputMulti-Output(MIMO)WirelessChannels . . . . . . . 26 2.3.4 TheReceivedElectricField . . . . . . . . . . . . . . . . . . . . . 31 2.3.5 Clarke’sReferenceModel . . . . . . . . . . . . . . . . . . . . . . 34 2.3.6 Jakes’Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.3.7 SpatialChannelModel . . . . . . . . . . . . . . . . . . . . . . . . 42 2.3.8 SimulationModel . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.4 LongTermEvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.4.1 OFDMTransmitterChain . . . . . . . . . . . . . . . . . . . . . . 57 2.4.2 LTEDownlinkRadioFrame . . . . . . . . . . . . . . . . . . . . . 64 2.4.3 SynchronizationSignals . . . . . . . . . . . . . . . . . . . . . . . 64 2.4.4 ReferenceSignalsandAntennaPorts . . . . . . . . . . . . . . . . 67 2.4.5 ChannelEstimation . . . . . . . . . . . . . . . . . . . . . . . . . . 73 2.4.6 LTELinkAdaptation . . . . . . . . . . . . . . . . . . . . . . . . . 79 2.5 LTETransmissionModes . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 2.5.1 TM1SingleAntennaTransmission . . . . . . . . . . . . . . . . . 83 2.5.2 TM2TransmitDiversity . . . . . . . . . . . . . . . . . . . . . . . 84 2.5.3 TM3Open-LoopSpatialMultiplexing . . . . . . . . . . . . . . . . 90 2.5.4 TM4Closed-LoopSpatialMultiplexing . . . . . . . . . . . . . . . 102 2.5.5 TM6SingleLayerClosed-LoopSpatialMultiplexing . . . . . . . . 109 vii 3 PerformanceSimulationSetup 111 3.1 LinkLevelSimulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 3.1.1 DownlinkChannelModelingintheLinkLevelSimulator . . . . . 111 3.1.2 ChannelModelsusedintheSimulator . . . . . . . . . . . . . . . . 118 3.2 SimulatingtheLTEDownlinkusingtheLinkLevelSimulator . . . . . . . 120 3.3 PerformanceMeasurementsandChannelQualityIndicators . . . . . . . . 120 3.3.1 ThroughputMeasurement . . . . . . . . . . . . . . . . . . . . . . 120 3.3.2 CQIandRankMeasurement . . . . . . . . . . . . . . . . . . . . . 121 3.4 SimulationParameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 3.4.1 SystemParameters . . . . . . . . . . . . . . . . . . . . . . . . . . 122 3.4.2 TransmissionParameters . . . . . . . . . . . . . . . . . . . . . . . 124 3.4.3 SimulationDuration . . . . . . . . . . . . . . . . . . . . . . . . . 126 3.4.4 AntennaSimulationParameters . . . . . . . . . . . . . . . . . . . 126 3.4.5 ChannelSimulationParameters . . . . . . . . . . . . . . . . . . . 128 3.4.6 ResourceAllocationandScheduling . . . . . . . . . . . . . . . . . 131 3.4.7 ReceiverAlgorithms . . . . . . . . . . . . . . . . . . . . . . . . . 132 3.4.8 ChannelStateInformation(CSI)ReportingforLinkAdaptation(LA)133 3.5 PerformanceBenchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 3.5.1 ThroughputPerformanceBenchmarking . . . . . . . . . . . . . . . 135 3.5.2 UEVelocityBenchmarking . . . . . . . . . . . . . . . . . . . . . 135 4 SimulationResults 137 4.1 AntennaConfigurationPerformance . . . . . . . . . . . . . . . . . . . . . 137 4.1.1 BaseStationAntennaConfigurations . . . . . . . . . . . . . . . . 138 4.1.2 MobileStationAntennaConfiguration . . . . . . . . . . . . . . . . 141 4.1.3 SummaryoftheAntennaConfigurations . . . . . . . . . . . . . . 142 4.1.4 TransmissionModesforAntennaConfigurationSimulations . . . . 142 4.1.5 4-Tx 4-Port TM2 vs TM4 rank-1 Throughput Differences at High andLowAntennaCorrelationusingSCMEandEPAChannelModels144 4.1.6 NumberofAntennasandAntennaPortSimulations . . . . . . . . . 155 4.2 PhaseNoiseEffectsontheLTEDownlink . . . . . . . . . . . . . . . . . . 170 4.2.1 PhaseNoiseModel . . . . . . . . . . . . . . . . . . . . . . . . . . 173 4.2.2 ReferenceSimulationsusingGeneratedPhaseNoiseandthe3GPP EPAChannelModel . . . . . . . . . . . . . . . . . . . . . . . . . 175 4.2.3 MeasuredPhaseNoiseSimulations . . . . . . . . . . . . . . . . . 179 viii 4.3 EffectsofUEVelocityandFeedbackReportingonTheLTEDownlink . . . 195 4.3.1 PracticalIssuesoftheLinkAdaptationControlLoop . . . . . . . . 195 4.3.2 LTEDownlinkThroughputvsCSIReportingSettingsandUEMo- bilitySimulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 4.3.3 LTEDownlinkSimulationsatHighSpeedTrainVelocities . . . . . 209 4.3.4 HighSpeedTrainResultsandDiscussion . . . . . . . . . . . . . . 211 5 ConclusionandFutureWork 220 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 5.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 AppendixA 225 A.1 4-bitChannelQualityIndicatorTable . . . . . . . . . . . . . . . . . . . . 225 A.2 ModulationandTransportBlockSizeIndexTableforthePDSCH . . . . . 225 A.3 ResourceBlockGroupSizeversusDownlinkBandwidth(Type0Resource Allocation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 AppendixB 229 B.1 Jakes’Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 AppendixC 231 C.1 PeakTheoreticalThroughputforLTEDownlinkTransmissions . . . . . . . 231 C.1.1 Peak Theoretical Throughput for 8 PRB UE Allocation using Sin- gleCodewordTransmissions . . . . . . . . . . . . . . . . . . . . . 231 C.1.2 TableofPeakTheoreticalThroughputValuesforVariousConfigu- rationsusedinthisThesis . . . . . . . . . . . . . . . . . . . . . . 232 AppendixD 234 D.1 CorrelationMatricesfor3GPPConformanceTestingChannelModels . . . 234 ListofReferences 236 ix List of Tables 1.1 LTEUplink/DownlinkThroughputSpeedsversusUserEquipmentCategories 2 2.1 Feature Comparison for SCM, SCME, WIM1, WIM2 Spatial Channel Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.2 EnvironmentParametersfortheUrbanMacroScenario . . . . . . . . . . . 48 2.3 DescriptionoftheSpatialChannelModelAngularParameters . . . . . . . 50 2.4 Description of the Parameters used in the SCME’s Channel TDL Generat- ingEquation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.5 TypicalLTESystemParameters . . . . . . . . . . . . . . . . . . . . . . . 56 2.6 TypesofDownlinkReferenceSignalsDefinedin3GPPLTERel8 . . . . . 68 2.7 CoherenceBandwidthfor3GPPConformanceTestingChannelModels . . 77 2.8 ChannelStateInformationReportedbytheUE . . . . . . . . . . . . . . . 81 2.9 LTETransmissionModes . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 2.10 Codeword-to-LayerMappingforTransmitDiversity(2AntennaPorts) . . . 86 2.11 Codeword-to-LayerMappingforTransmitDiversity(4AntennaPorts) . . . 88 2.12 TM3PDSCHTransmissionScheme . . . . . . . . . . . . . . . . . . . . . 91 2.13 Sub-BandSizevs. SystemBandwidth . . . . . . . . . . . . . . . . . . . . 93 2.14 DownlinkPhysicalLayerParametersSetByParameterUE-category . . . . 94 2.15 DownlinkPhysicalLayerCodeword-to-LayerMapping . . . . . . . . . . . 94 2.16 PrecoderCodebookforTransmissiononTwoAntennaPorts . . . . . . . . 98 2.17 PrecoderCodebookforTransmissiononFourAntennaPortsFrom[1] . . . 101 2.18 TM4PDSCHTransmissionScheme . . . . . . . . . . . . . . . . . . . . . 103 3.1 BaseSimulationParametersforLTEDownlinkThroughputComparisons . 123 3.2 SystemBandwidthusedinEachStudy . . . . . . . . . . . . . . . . . . . . 124 3.3 TransmissionModesusedinEachStudy . . . . . . . . . . . . . . . . . . . 125 3.4 AntennaPortsusedinEachStudy . . . . . . . . . . . . . . . . . . . . . . 125 3.5 ReferenceSignalPowerBoostingusedinEachStudy . . . . . . . . . . . . 126 3.6 ChannelModelsusedinEachStudy . . . . . . . . . . . . . . . . . . . . . 129 x 3.7 UEVelocitiesusedinthisThesis . . . . . . . . . . . . . . . . . . . . . . . 130 3.8 SpectralResourcesAllocatedtotheUEinEachStudy . . . . . . . . . . . 131 3.9 Outer-loopLinkAdaptationSettingsusedinEachStudy . . . . . . . . . . 132 3.10 LinkAdaptationSettingsusedinEachStudy . . . . . . . . . . . . . . . . 134 3.11 Sub-bandCQI/PMIGroupSizeSettingsusedinEachStudy . . . . . . . . 134 4.1 Wavelengths and Antenna Element Spacing of Two Common LTE Fre- quencyBands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 4.2 BSandMSAntennaConfigurations . . . . . . . . . . . . . . . . . . . . . 143 4.3 SimulationParametersfor4-Tx4-PortTM2andTM4Rank-1Simulations usingtheSCMEandEPAChannelModels . . . . . . . . . . . . . . . . . . 147 4.4 SimulatedvsTheoreticalThroughputfor4-Tx4-portTM2andTM4rank-1 withHighlyCorrelatedCross-PolarizedAntennasat3km/hr . . . . . . . . 148 4.5 SimulatedvsTheoreticalThroughputfor4-Tx4-portTM2andTM4rank-1 withUncorrelatedCross-PolarizedAntennasat3km/hr . . . . . . . . . . . 148 4.6 Throughputof4-Tx4-PortTM2andTM4rank-1at10dBSNR(EPA) . . . 149 4.7 Throughputof4-Tx4-PortTM2andTM4rank-1at10dBSNR(SCME) . 149 4.8 Gain of 4-Tx 4-Port TM4 rank-1 Over Other Modes and Antenna Config- urationsat2.5Mbps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 4.9 SimulationParametersfortheAntennaConfigurationSimulations . . . . . 157 4.10 Gain of 4 Transmitters 4-Port TM4 Over Other Number of Antennas at 25 MbpsataUEVelocityof2.1km/hr . . . . . . . . . . . . . . . . . . . . . 158 4.11 Gain of 4 Transmitters 4-Port TM4 Over Other Number of Antennas at 25 MbpsataUEVelocityof20.8km/hr . . . . . . . . . . . . . . . . . . . . . 162 4.12 ThroughputofBestAntennaConfigurationat14dBSNR(2.1km/hr) . . . 166 4.13 SimulationParametersfortheGeneratedPhaseNoiseSimulations . . . . . 177 4.14 PhaseJitterDataSetStatistics . . . . . . . . . . . . . . . . . . . . . . . . 185 4.15 SimulationParametersfortheMeasuredPhaseNoiseSimulations . . . . . 187 4.16 ApproximateMaximumUEVelocitySupportedbyCQIReporting . . . . . 200 4.17 SimulationParametersfortheDownlinkThroughputvsCSIReportingSet- tingsandUEVelocitySimulations . . . . . . . . . . . . . . . . . . . . . . 203 4.18 Simulation Parameters for the LTE Downlink Throughput in the High SpeedTrainScenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 4.19 DownlinkThroughputatIncreasingUEVelocity . . . . . . . . . . . . . . 213 4.20 AverageCQIIndexatIncreasingUEVelocity . . . . . . . . . . . . . . . . 218 xi

Description:
New technologies like LTE and LTE-Advanced are being refined and deployed to meet demands. results obtained with the advanced 3rd Generation Partnership Project's (3GPP) extended spatial channel . 2.3.6 Jakes'Model .
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.