ebook img

M.Sc. RESEARCH THESIS LARGE-SCALE MUSIC CLASSIFICATION USING AN APPROXIMATE ... PDF

106 Pages·2011·5.65 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview M.Sc. RESEARCH THESIS LARGE-SCALE MUSIC CLASSIFICATION USING AN APPROXIMATE ...

LARGE-SCALE MUSIC CLASSIFICATION USING AN APPROXIMATE k-NN CLASSIFIER Haukur Pálmason Master of Science Computer Science January 2011 School of Computer Science Reykjavík University M.Sc. RESEARCH THESIS ISSN1670-8539 Large-Scale Music Classification using an Approximate k-NN Classifier by Haukur Pálmason Research thesis submitted to the School of Computer Science at Reykjavík University in partial fulfillment of the requirements for the degree of Master of Science in Computer Science January 2011 Research Thesis Committee: Dr. Björn Þór Jónsson, Supervisor Associate Professor, Reykjavík University, Iceland Dr. Laurent Amsaleg Research Scientist, IRISA-CNRS, France Dr. Yngvi Björnsson Associate Professor, Reykjavík University, Iceland Copyright Haukur Pálmason January 2011 Large-Scale Music Classification using an Approximate k-NN Classifier Haukur Pálmason January 2011 Abstract Content based music classification typically uses low-level feature vectors of high-dimensionality to represent each song. Since most classification meth- ods used in the literature do not scale well, the number of such feature vec- tors is usually reduced in order to save computational time. Approximate k-NN classification, on the other hand, is very efficient and copes better with scale than other methods. It can therefore be applied to more feature vec- tors within a given time limit, potentially resulting in better quality. In this thesis, we first demonstrate the effectiveness and efficiency of approximate k-NN classification through a traditional genre classification task, achieving very respectable accuracy in a matter of minutes. We then apply the approx- imate k-NN classifier to a large-scale collection of more than thirty thousand songs. We show that, through an iterative process, the classification con- verges relatively quickly to a stable state. We also show that by weighing the classifier with the size of genres, genre distribution in the classification result is improved considerably. Flokkun stórra tónlistargrunna með k-NN nálgunarflokkun Haukur Pálmason Janúar 2011 Útdráttur Venjan er að sjálfvirk tegundarflokkun tónlistar byggð á innihaldi noti marg- víða lýsinga fyrir hvert lag. Þar sem fæstar gerðir flokkunar skalast vel er algengast að nota fáa slíkar lýsinga til að spara tíma. k-NN nálgunarflokkun er hins vegar skilvirk aðferð sem ræður betur við stór gagnasöfn en mar- gar aðrar aðferðir. Þess vegna er hægt að nota slíka flokkun á fleiri lýsinga innan ákveðinna tímamarka, sem hugsanlega skilar sér í meiri gæðum. Í þessari ritgerð sýnum við fyrst fram á árangur og skilvirkni notkunar k-NN nálgunarflokkunar á hefðbundna tónlistartegundarflokkun, þar sem við náum mjög prýðilegum árangri á nokkrum mínútum. Við keyrum síðan k-NN nálgunarflokkun á stórt lagasafn með yfir þrjátíu þúsund lögum. Við sýnum fram á að með ítruðu ferli beinist tónlistarsafnið fljótt yfir í stöðuga flokka. Einnig sýnum við fram á að með því að gefa flokkuninni mismunandi vægi eftir stærð hvers tegundarflokks, bætum við dreifingu tegundarflokka í niður- stöðunum umtalsvert. Tomywife,SigurbjörgÓskSigurðardóttir,andmythreekids, StefánElíHauksson,MikaelBlærHaukssonandÍsabellaSólHauksdóttir. vii Acknowledgements Dr. BjörnÞórJónsson,mysupervisor,forconvincingmetotakeonthisproject,andfor allhishelpinturningthisintoreality. Dr. LaurentAmsaleg,forhiscontributionsasco-authoroftherelatedpaper. Grímur Tómas Tómasson, a fellow M.Sc. student at the Database Lab for invaluable helpwithcodinganddebugging. TheReykjavíkUniversityDevelopmentFund,foraprojectgrantsupportingthiswork. The Icelandic Research Fund for Graduate Students, for a project grant supporting thiswork. Tonlist.is,forgrantingusresearchaccesstotheircollectionofIcelandicsongs. DavíðEinarsson,anemployeeatTonlist.is,forallhishelp. Dr. George Tzanetakis, for granting access to his song collection, and for quickly an- sweringallquestionsregardingtheMARSYASframework. Icelandicmusicians,whoparticipatedinmyground-truthexperiment. viii

Description:
k-NN classification through a traditional genre classification task, achieving very respectable .. The modern musical notation system is one form of symbolic representation of music. Figure 2.1 shows genres of the two collections and the fact that the Tzanetakis collection is generally older than
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.