Motion management for MRI-guided abdominal radiotherapy Bjorn Stemkens Colophon Cover: TheVitruvianmandemonstratingtheradialk-spacetrajectory. Themag- nifying glass resembles the MRL; clear visualization of internal anatomy leading to a converging radiation beam. Design: B. Stemkens, Vitruvian man designed by Freepik. Motion management for MRI-guided abdominal radiotherapy PhD thesis, Utrecht University, the Netherlands All rights reserved. No part of this publication may be reproduced, distributed, ortransmittedinanyformorbyanymeanswithoutthepriorwrittenpermission from the author. The copyright of the papers that have been published or have been accepted for publication has been transferred to the respective journals. For one project (Chapter 3) funding was provided in part by the Royal Nether- lands Academy of Arts and Sciences (KNAW) Ter Meulen grant. Manuscript Layout: B. Stemkens Typeset in: LATEX Printed by: ProefschriftMaken ISBN: 978-90-393-6849-7 Copyright (cid:13)cBjorn Stemkens (cid:13)cElsevier (Chapter 2) (cid:13)cWiley (Chapters 3 and 6) (cid:13)cIOP Publishing Ltd (Chapters 4 and 5) Motion management for MRI-guided abdominal radiotherapy Het controleren van beweging voor MRI-gestuurde radiotherapie in het abdomen (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof.dr. G.J. van der Zwaan, ingevolge het besluit van het college voor promoties in het openbaar te verdedingen op 5 oktober 2017 des middags te 2.30 uur door Bjorn Stemkens geboren op 30 maart 1989 te Helmond Promotor: Prof.dr.ir. J.J.W. Lagendijk Copromotoren: Dr.ir. H.N. Tijssen Dr.ir. C.A.T. van den Berg Financial support for publication of this thesis was kindly provided by Philips, Modus Medical Devices Inc., Elekta and Chipsoft. For those about to rock, we salute you! Contents List of Acronyms ix 1 General introduction 1 2 Optimizing4D-MRIdatasamplingforrespiratorymotionana- lysis of pancreatic tumors 13 3 Adaptivebulk-motionexclusionforimprovedrobustnessofab- dominal MR imaging 25 4 Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy 41 5 Dose accumulation in free-breathing MR-guided renal-cell car- cinoma SBRT 65 6 Maximizing SNR in simultaneous multi-slice body imaging 83 7 Summary and Discussion 101 8 Samenvatting 113 Bibliography 117 List of Publications 129 Acknowledgements 133 Curriculum vitae 137 vii List of Acronyms bSSFP balanced Steady-State Free Precession CAIPIRINHA ControlledAliasingInParallelImagingResultsInHigher Acceleration CBCT Cone-Beam Computed Tomography CS Compressed Sensing CT Computed Tomography CTV Clinical Target Volume DCE Dynamic Contrast Enhanced DVF Deformable Vector Field DWI Diffusion Weighted Imaging EBRT External Beam Radiation Therapy ED Electron Density EPID Electronic Portal Imaging Device FFT Fast Fourier Transform FID Free-Induction Decay FOV Field-Of-View g-factor Geometry factor GLM General Linear Model GRAPPA Generalized Autocalibrating Partially Parallel Acquisi- tions GTV Gross Tumor Volume IGRT Image-Guided Radiation Therapy IMRT Intensity Modulated Radiation Therapy ITV Internal Target Volume kV kilo Voltage Linac Linear Accelerator LISS Linearly Increasing Slice Shifts MLC Multi-Leaf Collimator MRI Magnetic Resonance Imaging MRL Magnetic Resonance Linear Accelerator MS Multi-Slice MV Mega Voltage NUFFT Non-Uniform Fast Fourier Transform OAR Organ At Risk PET Positron Emission Tomography ix PI Parallel Imaging PSA Power Spectrum Analysis PTV Planning Target Volume RF Radio Frequency SBRT Stereotactic Body Radiation Therapy SENSE Sensitivity Encoding SMASH Simultaneous Acquisition of Spatial Harmonics SMS Simultaneous Multi-Slice SNR Signal-to-Noise Ratio SOS Stack-Of-Stars SPECT Single-Photon Emission Computed Tomography TCP Tumor Control Probability TSE Turbo Spin Echo TV Total Variation VMAT Volumetric Arc Therapy
Description: