ebook img

Mountain Rivers Revisited PDF

576 Pages·2010·5.481 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mountain Rivers Revisited

Water Resources Monograph 19 MOUNTAIN RIVERS REVISITED Ellen Wohl Washington, DC Published under the aegis of the AGU Books Board Kenneth R. Minschwaner, Chair; Gray E. Bebout, Joseph E. Borovsky, Kenneth H. Brink, Ralf R. Haese, Robert B. Jackson, W. Berry Lyons, Thomas Nicholson, Andrew Nyblade, Nancy N. Rabalais, A. Surjalal Sharma, and Darrell Strobel, members. Library of Congress Cataloging-in-Publication Data Wohl, Ellen E., 1962- Mountain rivers revisited / Ellen Wohl. p. cm. — (Water resources monograph ; 19) Rev. ed. of: Mountain rivers, c2000. Includes bibliographical references and index. ISBN 978-0-87590-323-1 1. Rivers. 2. Mountains. I. Wohl, Ellen E., 1962- Mountain rivers. II. Title. III. Series: Water resources monograph ; 19. GB1203.2W64 2010 551.48'309143—dc22 2010044835 ISBN 978-0-87590-323-1 ISSN 0170-9600 Copyright 2010 by the American Geophysical Union 2000 Florida Avenue, N.W. Washington, DC 20009 Cover photographs by Ellen Wohl. (front) Tributary of Tonahutu Creek, Rocky Mountain National Park, Colorado. (back) Rio Sardinal in Braulio Carillo National Park, Costa Rica. Figures, tables, and short excerpts may be reprinted in scientific books and journals if the source is properly cited. Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by the American Geophysical Union for libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of $1.50 per copy plus $0.35 per page is paid directly to CCC, 222 Rosewood Dr., Danvers, MA 01923. 0170-9600/10/$01.50+0.35. This consent does not extend to other kinds of copying, such as copying for creating new collective works or for resale. The reproduction of multiple copies and the use of full articles or the use of extracts, including figures and tables, for commercial purposes requires permission from the American Geophysical Union. geopress is an imprint of the American Geophysical Union. Printed in the United States of America. CONTENTS Preface ......................................................................................................................................vii 1. Introduction ............................................................................................................................1 1.1. Characteristics of Mountain Rivers ...............................................................................2 1.2. Advances Since the First Edition ...................................................................................3 1.3. Purpose and Organization of This Volume ....................................................................4 1.4. A Mountain River Described and Enumerated ..............................................................5 1.4.1. North St. Vrain Creek, Colorado, USA ...............................................................8 2. Mountain Drainage Basins ...................................................................................................13 2.1. Mountain Rivers and Tectonics ...................................................................................14 2.2. Hillslopes .....................................................................................................................20 2.2.1. Controls on Slope Morphology .........................................................................21 2.2.2. Steady-State Hillslopes ......................................................................................23 2.2.3. Bedrock Weathering and Soils...........................................................................24 2.2.4. Mass Movements ...............................................................................................25 2.2.4.1. Landslides .............................................................................................26 2.2.4.2. Debris flows..........................................................................................28 2.2.5. Diffusive Sediment Transport on Hillslopes .....................................................35 2.2.5.1. Creep ....................................................................................................35 2.2.5.2. Rainsplash and overland flow ..............................................................36 2.2.5.3. Modeling diffusive transport ................................................................38 2.2.6. Modeling Slope Morphology and Sediment Movement ...................................39 2.3. Climate and Hydrology ...............................................................................................40 2.3.1. Generation of Precipitation ................................................................................41 2.3.2. Glacier and Snow Melt ......................................................................................45 2.3.3. Down Slope Pathways of Water ........................................................................46 2.3.4. Modeling Hillslope Hydrology ..........................................................................55 2.3.5. Pressing Hydrologic Needs for Mountain Regions ...........................................57 2.4. Channel Initiation and Development ...........................................................................58 2.4.1. Channel Initiation ..............................................................................................58 2.4.2. Channel Network Development ........................................................................64 2.5. Basin Morphometry and Basin-Scale Patterns ............................................................65 2.5.1. Basin Morphometry and Hydrology ..................................................................67 2.5.2. Hydraulic Geometry ..........................................................................................70 2.5.3. Downstream Fining ...........................................................................................73 2.6. Valley Morphology ......................................................................................................75 2.7. Longitudinal Profiles and Bedrock Channel Incision ..................................................78 2.7.1. Processes of Bedrock Channel Erosion .............................................................81 2.7.2. Models of Bedrock Channel Incision ................................................................84 2.8. Knickpoints and Gorges ..............................................................................................87 2.9. Terraces ........................................................................................................................92 2.10. Alluvial Fans ..............................................................................................................96 2.11. Summary ..................................................................................................................102 3. Channel Processes ..............................................................................................................103 3.1. Hydrology ..................................................................................................................103 3.1.1. Discharge Estimation and Flow State ..............................................................103 3.1.2. Paleoflood Indicators .......................................................................................107 3.1.3. Modeling Stream Discharge .............................................................................111 3.1.4. Bankfull Discharge ..........................................................................................112 3.1.5. Floods ..............................................................................................................114 3.1.5.1. Outburst floods ...................................................................................116 3.1.5.2. Geomorphic effects of floods .............................................................119 3.2. The Hyporheic Zone ..................................................................................................123 3.3. River Chemistry .........................................................................................................128 3.3.1. Dissolved Nutrients .........................................................................................133 3.3.2. Organic Matter and Gases ...............................................................................136 3.3.3. Trace Metals and Pollutants .............................................................................138 3.4. Hydraulics ..................................................................................................................141 3.4.1. Resistance Coefficient .....................................................................................141 3.4.2. Resistance Partitioning ....................................................................................149 3.4.3. Velocity and Turbulence ..................................................................................154 3.4.4. Bed Shear Stress ..............................................................................................163 3.4.5. Stream Power ...................................................................................................165 3.5. Sediment Processes ....................................................................................................166 3.5.1. Bed Sediment Characterization .......................................................................166 3.5.1.1. Sampling and measurement ...............................................................166 3.5.1.2. Coarse surface layers ..........................................................................169 3.5.2. Particle Clusters ...............................................................................................171 3.5.3. Sediment Entrainment .....................................................................................172 3.5.4. Measurement of Bedload Transport ................................................................179 3.5.5. Mechanics of Bedload Transport .....................................................................182 3.5.6. Downstream Bedload Transport Patterns, Rates, and Frequency ....................185 3.5.7. Bedload Transport Equations ..........................................................................191 3.5.8. Bedload Yield and Sediment Budgets .............................................................197 3.5.9. Processes of Deposition ...................................................................................205 3.5.10. Suspended Sediment ......................................................................................207 3.6. Bank Stability ............................................................................................................213 3.7. Instream Wood ...........................................................................................................215 3.8. Channel Stability and Downstream Trends ...............................................................223 3.9. Summary ....................................................................................................................226 4. Channel Morphology .........................................................................................................229 4.1. Spatial and Temporal Variability in Channel Morphology ........................................229 4.2. Channel Classification Systems .................................................................................234 4.3. Channel Morphologic Types ......................................................................................236 4.3.1. Step-Pool Channels .........................................................................................236 4.3.2. Plane-Bed Channels .........................................................................................242 4.3.3. Pool-Riffle Channels .......................................................................................243 4.4. Incised Alluvial Channels ..........................................................................................249 4.5. Braided Channels .......................................................................................................250 4.6. Anabranching Channels .............................................................................................255 4.7. Spatial Distribution of Morphologic Types and Network Heterogeneity ..................256 4.8. Summary ....................................................................................................................257 5. Mountain River Biota ........................................................................................................259 5.1. River Ecology ............................................................................................................259 5.1.1. Only Connect ...................................................................................................259 5.1.2. The Physical and Chemical Environment of a River Ecosystem ....................262 5.2. Aquatic Communities ................................................................................................264 5.3. Riparian Communities ...............................................................................................269 5.3.1. Basic Characteristics .......................................................................................269 5.3.2. Interactions Between Riparian Vegetation and Channel Processes .................272 5.4. Conceptual Models ....................................................................................................277 5.5. Biological Stream Classifications ..............................................................................283 5.6. Mountain River Ecosystems ......................................................................................284 5.7. Case Studies of Human Impacts to Mountain River Ecosystems .............................286 5.7.1. The Columbia River Basin ..............................................................................286 5.7.2. The Danube River Basin..................................................................................288 5.8. Summary ....................................................................................................................292 6. Mountain Rivers and Humans ...........................................................................................295 6.1. Types of Impact .........................................................................................................296 6.1.1. Indirect Impacts ...............................................................................................297 6.1.2. Direct Impacts .................................................................................................313 6.2. Contemporary Status of Mountain Rivers .................................................................327 6.3. Hazards ......................................................................................................................328 6.3.1. Debris Flows ....................................................................................................329 6.3.2. Landslides ........................................................................................................334 6.3.3. Floods ..............................................................................................................336 6.4. River Management ....................................................................................................339 6.4.1. Restoration and Rehabilitation ........................................................................339 6.4.2. Instream and Channel Maintenance Flows and the Natural Flow Regime .....345 6.5. Summary ....................................................................................................................346 7. Field Data, Experiments, Computers, Brains .....................................................................349 Glossary .................................................................................................................................353 References ..............................................................................................................................357 Index ......................................................................................................................................565 PREFACE I wrote the first edition of this book, published in 2000, in response to a need expressedbyoneofmyPh.D.studentsatthetime,DavidMerritt,whowalkedintomy officeoneafternoonforasummaryreferenceonmountainrivers.WhenIrealizedthat suchareferencedidnotexist,Isetouttocreateone.Theinclusionoftopicsreflected myownbeliefthatriversneedtobeexaminednotsolelyasphysicalsystemsbutalso asriverecosystemswithchemicalandbiologicalcomponentsthatexistinthecontext of pervasive and long duration human alteration of the environment. As research on topics related tomountainrivers grew dramatically during thepastdecade,Idecided that it was time to write a second edition, and I reorganized the book to reflect my understandingofevolvingknowledge. As with the first edition, this second edition is aimed primarily at an audience already familiar with the basics of river process and form, although the reader with littleknowledgeofrelatedtopics,suchasriverchemistry,hyporheiczones,orriparian andaquaticecology,canalsogainaquickintroductoryoverviewofthosetopicsfrom thisvolume.Advancedundergraduates,graduatestudents,andprofessionalscientists and engineers who possess some general knowledge of river systems will find this volume of use, both for its own sake and to help them build on their existing knowledgeofmountainriverstobetterunderstandtheuniqueaspectsoftheserivers. Youcanreadthebookstraightthrough,becauseeachsectionbuildsuponthesections that precede it, or use the book as a spot reference to provide a synthesis of current knowledgeonspecifictopics. Thefirsteditionbenefitedsubstantiallyfromdiscussionswith,andcriticalreviews by, Paul Carling (University of Southampton, England), Dan Cenderelli (U.S. Forest Service),AlanCovich(UniversityofGeorgia),JanetCurran(U.S.GeologicalSurvey), Jim Finley (Telesto Solutions, Inc.), David Merritt (U.S. Forest Service), and LeRoy Poff (Colorado State University) and AGU reviews by John Costa (U.S. Geological Survey),AvijitGupta(UniversityofLeeds,England),andMalcolmNewson(Univer- sity of Newcastle upon Tyne, England). Much of that material is still in this edition, and I thank each of these individuals for their efforts. The second edition has also benefited from discussions with Gordon Grant (U.S. Forest Service), Bob Hilton MountainRiversRevisited WaterResourcesMonograph19 Copyright2010bytheAmericanGeophysicalUnion. 10.1029/2010WM001038 vii viii Preface (Durham University), Neils Hovius (Cambridge University), Mark Macklin (Univer- sity of Aberystwyth), and Grant Meyer (University of New Mexico) and reviews by Jim O’Connor (U.S. Geological Survey) and an anonymous reviewer, as well as the enhanced energy and concentration provided by Whole Foods’ organic French roast coffee. As with the first edition, I would like to dedicate this second edition to my graduatestudents.Theycontinuetochallenge,engage,andsurprisemeandtoprovide muchofthepleasurethatcomesfromworkinginfluvialgeomorphology. EllenWohl ColoradoStateUniversity 1 1. INTRODUCTION Riversshapemanyoftheworld’slandscapes.Intheprocessoftransportingwater, sediment, and dissolved chemicals from uplands, rivers redistribute mass across the Earth’ssurface.Riverssetthepaceatwhichweatheringanderosionlowerlandscapes, andcontrolthegradientofadjacenthillslopes.Fundamentally,riversorganizeterres- trial landscapes into drainage basins. As the rivers incise or aggrade in response to changes in baselevel, they create valleys that influence local climate; provide travel corridors for animals and humans; and support aquatic and riparian ecosystems that containsomeoftheEarth’shighestlevelsofbiodiversity. Scientistshavesystematicallystudiedriversformorethantwocenturies.Among the questions asked have been: How do rivers interact with other variables such as climate, lithology and tectonics that influence landscapes? What governs the spatial distribution of river channels? What factors control the yield of water and sediment fromhillslopestorivers?Howdointeractions between water andsediment influence channelgeometrythroughtimeandspace? Thisvolumesummarizescontemporaryunderstandingoftheseandotheraspectsof rivers,inthecontextofriversdrainingmountainousenvironments.Althoughthestudy ofriversiswell-established,investigatorstypicallyfocusedonthelowlandriversalong whichmostpeopleliveuntilthefinaldecadesofthe20thcentury.Asubstantialincrease intheamountofresearchdirectedtowardmountainriversduringthefirstdecadeofthe 21stcenturysupports theneed forthis secondedition of MountainRivers, which was originallypublishedin2000.Increasedattentiontoriversinmountainousregionsresults fromseveraltrendswithinscienceandthegreatersociety.Amongtheseisthefocuson numerically simulating landscape evolution over long timespans, which requires that modelersquantitativelyparameterizeratesofriverincisionandratesofcrustalupliftin mountainousregions.Anotherfactordrivingincreasedinvestigationofmountainrivers isattemptstomaintainorrestoreriversasecologicalrefugesandascriticalcomponents ofwatersupplyinmountainousregions,whichtendtobelessdenselypopulatedthan adjacent lowlands. Finally, mountain rivers with steep, coarse-grained, poorly-sorted beds,andlimitedsedimentsupplyaretypicallypoorlydescribedbyempiricalequations for hydraulics and sediment dynamics developed for rivers with lower gradients, makingthestudyofmountainriversanintellectualandmanagementchallenge. MountainRiversRevisited WaterResourcesMonograph19 Copyright2010bytheAmericanGeophysicalUnion. 10.1029/2010WM001039 1 2 Mountain Rivers Revisited 1.1. Characteristics of Mountain Rivers In this volume I define a mountain river as being located within a mountainous regionandamountainousregionashavingameanelevationabovesealevel≥1000m [Viviroli et al., 2003]. Each of the continentsincludes at least onemajor mountainous region (Figure 1.1). (Selected images appear in print. All images are available on the CD-ROM that accompanies the book.) Mountains cover 52% of Asia, 36% of North America,25%ofEurope,22%ofSouthAmerica,17%ofAustralia,and3%ofAfrica, aswellassubstantialareasofislandsincludingJapan,NewGuinea,andNewZealand [Bridges,1990].Mountainriversarethuswidespread.Becauseofthesteeptopography ofmountainous regions,mountainriverstypically have a gradient≥ 0.002m/m along the majority of the channel length [Jarrett, 1992], although substantial longitudinal variability of channel geometry is common in mountainous regions as a result of longitudinalvariationsinrockresistance,glacialhistory,andhillslopestability.Lower gradientreachesofchanneltypicallyoccurupstreamofglacialendmoraines,massive landslide deposits, or beaver dams, for example, but these reaches create relatively shortinterruptionsbetweenthesteeperchannelsegmentsup-anddownstream. As with lowland rivers, mountain rivers exhibit great variability in hydrologic regime; channel planform; channel gradient, grain size, and bedforms; sediment dy- namics; and aquatic and riparian biota, both within individual mountain ranges and among diverse mountainous regions. Mountain rivers, as defined here, include first- order channels less than a meter wide fed by snowmelt draining an alpine meadow (Figure 1.2); wider rivers cutting steep-walled valleys that dense tropical rain forest vegetationcannotstabilizeagainstperiodiclandslides(Figure1.3);ephemeralchannels incised into bedrock in arid mountains (Figure 1.4); boreal rivers with cutbanks exposing permafrost (Figure 1.5); and big, powerful rivers like the Indus that carry thousands of kilograms of sediment down to the adjacent lowlands each year (Figure 1.6).Perhapstheonlyconsistentcharacteristicofmountainriversistheirtypicallysteep gradients,althoughsteepgradientstendtocorrelatewithothercharacteristics,including & erosionallyresistantandhydraulicallyroughchannelboundariesassociatedwith bedrock and coarse clasts; & highly turbulent flow with numerous longitudinal transitions between sub- and supercritical flow; & limited supply of sediment of fine gravel and smaller size; & bedloadmovementthatishighlyvariableinspaceandtime,withhigherthresholds for initiation of motion than many lowland rivers; & strongly seasonal discharge regime associated with glacial melt, snowmelt, or sea- sonal rainfall; & substantialspatial variability indischargeasaresultofspatial variability inpre- cipitation and runoff caused by differences in elevation, basin orientation, and land cover; & large longitudinal variations in channel geometry associated with variations in tectonics, lithology, glacial history, and sediment supply; Wohl 3 & insomecases,lessertemporalvariationsinchannelgeometrythanlowlandrivers because only infrequent floods or debris flows can exceed boundary resistance sufficiently to cause substantial channel change; & relatively narrow valley bottoms with limited development of floodplains and lateral movements by rivers; & in the absence of wide valley bottoms and the associated buffering of stream channelsfromhillslopeprocesses,mountainrivershavethepotential fororders- of-magnitude increase in water and sediment yield over a period of a few years following watershed-scale disturbances such as wildfire or timber harvest; and & longitudinal zonation of aquatic and riparian biota influenced by river charac- teristics and by elevation as it relates to temperature and precipitation. Mountainriverstendexhibithighdegreesofconnectivity.Landscapeconnectivity [Brierley et al., 2006] is high because individual landforms such as hillslopes and streamchannelsarecloselycoupledwithinadrainagebasin.Hydrologicalconnectivity [Bracken and Croke, 2007] is high because water moves rapidly from one landform to another and through the entire drainage basin relative to lowland watersheds with extensivegroundwaterstorage.Sedimentconnectivity[Fryirsetal.,2007]ishighbecause limitedstoragemeansthatsedimentmovesrelativelyrapidlyfromproductionsiteson hillslopesthroughthedrainagebasin.Increasingresearchemphasisondifferentforms ofconnectivityreflectsadesiretomovebeyondsmallspatialandshorttemporalscales of investigation in order to focus on emergent properties that evolve from the self- organizationinherentinrivercatchments[Phillips,2003;McDonnelletal.,2007;Reid etal.,2007b;AliandRoy,2009]. 1.2. Advances Since the First Edition Writing the second edition proved to be a much more time-consuming and expansiveprocessthanIhadinitiallyexpected,butthisreflectsthedynamicnatureof contemporarystudiesofgeomorphologyandmountainrivers.Manyareasofinvesti- gationhaveexpandeddramaticallysincethelate1990sandthevolumeofassociated literaturehasgrowncorrespondingly.Dramaticincreasesintheamountofresearchin topics such as: the interactions of tectonics, topography, and climate [Willett et al., 2006]; hillslope hydrology and modeling [Franks et al., 2005]; debris flows and associatedhazards[JakobandHungr,2005];soildevelopmentandhillslopeprocesses [Heimsath et al., 2001; Roering, 2004]; hydraulics of steep channels [Ferguson, 2007]; braided river process and form [Sambrook Smith et al., 2006]; diverse types of numerical models and associated predictions [Wilcock and Iverson, 2003; Tucker and Hancock, 2010]; geochronology [Madsen and Murray, 2009]; and instrumenta- tion[Jonesetal.,2007]havemadeitchallengingtokeeptrackofandsynthesizethe literature. As a result, I have introduced several new sections to the second edition, substantially expanded other areas, and altered the organization of the volume to reflect changing research emphases within the community.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.