Intelligent Systems, Control and Automation: Science and Engineering Javier Moreno-Valenzuela Carlos Aguilar-Avelar Motion Control of Underactuated Mechanical Systems Intelligent Systems, Control and Automation: Science and Engineering Volume 88 Series editor Professor S.G. Tzafestas, National Technical University of Athens, Greece Editorial Advisory Board Professor P. Antsaklis, University of Notre Dame, IN, USA Professor P. Borne, Ecole Centrale de Lille, France Professor R. Carelli, Universidad Nacional de San Juan, Argentina Professor T. Fukuda, Nagoya University, Japan Professor N.R. Gans, The University of Texas at Dallas, Richardson, TX, USA Professor F. Harashima, University of Tokyo, Japan Professor P. Martinet, Ecole Centrale de Nantes, France Professor S. Monaco, University La Sapienza, Rome, Italy Professor R.R. Negenborn, Delft University of Technology, The Netherlands Professor A.M. Pascoal, Institute for Systems and Robotics, Lisbon, Portugal Professor G. Schmidt, Technical University of Munich, Germany Professor T.M. Sobh, University of Bridgeport, CT, USA Professor C. Tzafestas, National Technical University of Athens, Greece Professor K. Valavanis, University of Denver, Colorado, USA More information about this series at http://www.springer.com/series/6259 Javier Moreno-Valenzuela Carlos Aguilar-Avelar (cid:129) Motion Control of Underactuated Mechanical Systems 123 Javier Moreno-Valenzuela Carlos Aguilar-Avelar Instituto Politécnico Nacional-CITEDI Instituto Politécnico Nacional-CITEDI Tijuana Tijuana Mexico Mexico ISSN 2213-8986 ISSN 2213-8994 (electronic) Intelligent Systems, Control andAutomation: Science andEngineering ISBN978-3-319-58318-1 ISBN978-3-319-58319-8 (eBook) DOI 10.1007/978-3-319-58319-8 LibraryofCongressControlNumber:2017943216 ©SpringerInternationalPublishingAG2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface The growth in automated manufacturing since the ‘60s has motivated the study of the control and motion planning of many types of mechanical systems, such as industrial manipulators. It seems that the term underactuated first appeared when researchers started to form the question as to how to achieve control in a robot manipulatorifoneactuatorgoesoff.Withthepassageoftime,thistermhasbecome more formally defined to describe any system with more degrees offreedom than actuators.Thisprovidedanew contextforstudyingcertain otherproblemsalready known from the beginning of the contemporary era, like the control aerospace systems. Thus, the study of the control of underactuated mechanical systems has become a prolific field since the late ‘90s. Nowadays, the control of underactuated systems is studied in many undergraduate and graduate courses and many ofthese systems have become benchmarks for testing new control methodologies. Most of the literature in the field has been focused on the regulation problem, whilethedevelopmentoftrackingcontrolofreferencetrajectories,althoughuseful in many practical applications, has been a topic rarely studied. It is here that this bookfindsitsplace,bystudyinganddevelopingnewparadigmsformotioncontrol of underactuated systems. A unified perspective on the control of underactuated mechanical systems is presentedinthisbook.Firstly,itprovidesareliableparameteridentificationmethod tobeimplementedinareal-timeexperimentalplatform,sinceanaccuratemodelof asystem allows forperformingmodel-based control implementations,gaintuning, andnumericalsimulations.Secondly,itgivesavarietyofmotioncontrolalgorithms fortheFurutapendulumandtheinertiawheelpendulum,whicharetwodegrees-of- freedom underactuated mechanical systems. This book addresses and solves the problem of motion control via the trajectory tracking in one joint coordinate while another joint is regulated. Modelling and identification play an important role in the results reported. Specifically, an easy-to-implement parameter identification methodology is explained by means of the Furuta pendulum and inertia wheel pendulum. Such a methodology can be easily extended to other systems, allowing researchers and students to obtain value from this book. v vi Preface This book presents novel ideas on the control of two degrees-of-freedom underactuated mechanical systems and forms a basis for the development of gen- eralizations and applications in more complex higher degrees-of-freedom systems in robotics, marine and aerospace vehicles. The main design philosophies used in this book embraces techniques like feedback linearization control, energy-based control, neural networks, adaptive control, and integral dynamic extensions. Thisbookwaswrittenforstudentsattheundergraduateandgraduatelevelsand researchers in the areas of nonlinear control and mechatronics, as well as researchers interested in joining practice and theory. This book is indebted to the following friends and colleagues who directly or indirectly influenced its contents. Professor Rafael Kelly for many fruitful discus- sions on control of robot manipulators, as well as conceptions of Lyapunov func- tions. Professor Victor Santibáñez for encouraging discussions concerning the motion control underactuated mechanical systems and control of mechatronic sys- tems.ProfessorRodolpheSepulchreforhisinspiringlecturesonhowtomakeuseof controltheoryasaspeciallanguagetoexplainthingsinphysics.ProfessorRicardo Campaforhiscriticisminthereadingofmanymanuscriptsofthefirstauthor.Weare also thankful to some graduate students who were advised by the first author. In particular,SergioPuga-Guzmánforhiscomprehensiveworkinthedevelopmentof control algorithms based on neural networks, Octavio García-Alarcón for his enthusiasmintheconstructionoftheFurutapendulumandanearlyprototypeofthe IWP and Ricardo Rodríguez-Calderón for his work inthe construction andparam- eter identification ofthe IWP. We are grateful to CONACyT, Project no. 176587, and Secretaría de Investigación y Posgrado del Instituto Politécnico Nacional, Mexico, for sup- porting the research that led to most of the results presented in this book. We are also grateful to the Instituto Politécnico Nacional-CITEDI for creating an envi- ronment that allowed us to write this book. Tijuana, Mexico Javier Moreno-Valenzuela January 2017 Carlos Aguilar-Avelar Contents 1 Introduction... .... .... ..... .... .... .... .... .... ..... .... 1 1.1 Background .. .... ..... .... .... .... .... .... ..... .... 1 1.1.1 Underactuated Systems .... .... .... .... ..... .... 1 1.1.2 Nonlinear Dynamics and Control .... .... ..... .... 3 1.1.3 Parameter Identification.... .... .... .... ..... .... 6 1.1.4 Motion Control of Underactuated Systems . ..... .... 7 1.2 Motivations and Objectives.... .... .... .... .... ..... .... 9 1.3 Outline .. .... .... ..... .... .... .... .... .... ..... .... 9 2 Preliminaries .. .... .... ..... .... .... .... .... .... ..... .... 13 2.1 Fundamentals of Nonlinear Systems. .... .... .... ..... .... 13 2.2 Fundamental Properties... .... .... .... .... .... ..... .... 15 2.3 Concepts of Stability .... .... .... .... .... .... ..... .... 15 2.4 Barbalat’s Lemma.. ..... .... .... .... .... .... ..... .... 18 2.5 Boundedness and Ultimate Boundedness . .... .... ..... .... 18 2.6 Feedback Linearization... .... .... .... .... .... ..... .... 19 2.7 Artificial Neural Networks .... .... .... .... .... ..... .... 22 2.7.1 Universal Function Approximation Property ..... .... 24 3 Identification of Underactuated Mechanical Systems ... ..... .... 27 3.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 27 3.2 Identification of the Furuta Pendulum.... .... .... ..... .... 28 3.2.1 Dynamic Model.. .... .... .... .... .... ..... .... 28 3.2.2 Filtered Regression Model.. .... .... .... ..... .... 30 3.2.3 Discretization of the Filtered Regression Model .. .... 32 3.2.4 Experimental Platform. .... .... .... .... ..... .... 33 3.2.5 Motion Control Experiment. .... .... .... ..... .... 34 3.2.6 Joint Velocity Calculation.. .... .... .... ..... .... 35 3.2.7 Least Squares Algorithm... .... .... .... ..... .... 36 3.2.8 Results of the Identification Procedure .... ..... .... 37 vii viii Contents 3.3 Identification of the Inertia Wheel Pendulum .. .... ..... .... 40 3.3.1 Dynamic Model.. .... .... .... .... .... ..... .... 40 3.3.2 Filtered Regression Model.. .... .... .... ..... .... 42 3.3.3 Discretization of the Filtered Regression Model .. .... 43 3.3.4 Experimental Platform. .... .... .... .... ..... .... 44 3.3.5 Motion Control Experiment. .... .... .... ..... .... 45 3.3.6 Joint Velocity Calculation.. .... .... .... ..... .... 45 3.3.7 Least Squares Algorithm... .... .... .... ..... .... 46 3.3.8 Results of the Identification Procedure .... ..... .... 47 3.4 Concluding Remarks..... .... .... .... .... .... ..... .... 49 4 Composite Control of the Furuta Pendulum.. .... .... ..... .... 51 4.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 51 4.2 Dynamic Model ... ..... .... .... .... .... .... ..... .... 52 4.3 Control Problem Formulation.. .... .... .... .... ..... .... 53 4.4 Design of the Proposed Scheme.... .... .... .... ..... .... 54 4.4.1 Feedback Linearization Part. .... .... .... ..... .... 54 4.4.2 Energy-Based Compensation.... .... .... ..... .... 55 4.4.3 Summary of the Composite Controller .... ..... .... 59 4.5 Analysis of the Closed-Loop Trajectories. .... .... ..... .... 60 4.6 Controller for the Performance Comparison ... .... ..... .... 61 4.6.1 Output Tracking Controller. .... .... .... ..... .... 61 4.7 Experimental Evaluation.. .... .... .... .... .... ..... .... 62 4.7.1 Experimental Results.. .... .... .... .... ..... .... 62 4.7.2 Performance Comparison... .... .... .... ..... .... 65 4.8 Concluding Remarks..... .... .... .... .... .... ..... .... 68 5 Feedback Linearization Control of the Furuta Pendulum .... .... 69 5.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 69 5.2 Dynamic Model and Error Dynamics.... .... .... ..... .... 70 5.3 Control Problem Formulation.. .... .... .... .... ..... .... 72 5.4 Design of the Proposed Scheme.... .... .... .... ..... .... 72 5.5 Analysis of the Closed-Loop Trajectories. .... .... ..... .... 73 5.5.1 Ultimate Bound.. .... .... .... .... .... ..... .... 78 5.5.2 Boundedness of the Error Trajectories. .... ..... .... 79 5.6 Controllers for the Performance Comparison .. .... ..... .... 80 5.6.1 PID Controller... .... .... .... .... .... ..... .... 80 5.6.2 Output Tracking Controller. .... .... .... ..... .... 81 5.7 Experimental Evaluation.. .... .... .... .... .... ..... .... 82 5.7.1 Experimental Results.. .... .... .... .... ..... .... 82 5.7.2 Performance Comparison... .... .... .... ..... .... 85 5.8 Concluding Remarks..... .... .... .... .... .... ..... .... 91 Contents ix 6 Adaptive Neural Network Control of the Furuta Pendulum .. .... 93 6.1 Dynamic Model and Error Dynamics.... .... .... ..... .... 94 6.2 Control Problem Formulation.. .... .... .... .... ..... .... 96 6.3 Design of the Proposed Scheme.... .... .... .... ..... .... 96 6.4 Analysis of the Closed-Loop Trajectories. .... .... ..... .... 99 6.5 Controllers for the Performance Comparison .. .... ..... .... 108 6.5.1 PID Controller... .... .... .... .... .... ..... .... 108 6.5.2 Jung and Kim Controller... .... .... .... ..... .... 109 6.5.3 Chaoui and Sicard Controller ... .... .... ..... .... 109 6.6 Experimental Evaluation.. .... .... .... .... .... ..... .... 110 6.6.1 Experimental Results and Performance Comparison ... 110 6.7 Concluding Remarks..... .... .... .... .... .... ..... .... 118 7 Composite Control of the IWP. .... .... .... .... .... ..... .... 119 7.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 119 7.2 Dynamic Model ... ..... .... .... .... .... .... ..... .... 121 7.3 Control Problem Formulation.. .... .... .... .... ..... .... 122 7.4 Design of the Proposed Scheme.... .... .... .... ..... .... 122 7.4.1 Feedback Linearization Controller.... .... ..... .... 122 7.4.2 Energy-Based Compensation.... .... .... ..... .... 124 7.4.3 Summary of the Composite Controller .... ..... .... 128 7.5 Analysis of the Closed-Loop Trajectories. .... .... ..... .... 128 7.6 Integral Extension.. ..... .... .... .... .... .... ..... .... 130 7.7 Controller for the Performance Comparison ... .... ..... .... 131 7.7.1 LQR Motion Controller.... .... .... .... ..... .... 131 7.8 Experimental Evaluation.. .... .... .... .... .... ..... .... 131 7.8.1 Swing-up ControlþMotion Control .. .... ..... .... 132 7.8.2 Experimental Results.. .... .... .... .... ..... .... 133 7.8.3 Performance Comparison... .... .... .... ..... .... 135 7.9 Concluding Remarks..... .... .... .... .... .... ..... .... 140 8 Feedback Linearization Control of the IWP.. .... .... ..... .... 141 8.1 Dynamic Model and Error Dynamics.... .... .... ..... .... 143 8.2 Control Problem Formulation.. .... .... .... .... ..... .... 145 8.3 Design of the Proposed Scheme.... .... .... .... ..... .... 145 8.4 Analysis of the Closed-Loop Trajectories. .... .... ..... .... 146 8.5 Controllers for the Performance Comparison .. .... ..... .... 150 8.5.1 State Feedback Controller .. .... .... .... ..... .... 150 8.5.2 Particular Feedback Linearization Controller..... .... 151 8.6 Experimental Evaluation.. .... .... .... .... .... ..... .... 154 8.6.1 Experimental Results.. .... .... .... .... ..... .... 155 8.6.2 Performance Comparison... .... .... .... ..... .... 157 8.7 Concluding Remarks..... .... .... .... .... .... ..... .... 158
Description: