ebook img

Mosquito-Borne Diseases: Advances in Modelling Climate-Change Impacts PDF

2018·3.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mosquito-Borne Diseases: Advances in Modelling Climate-Change Impacts

Review [436_TD$DIFF] Mosquito-Borne Diseases: Advances in Modelling Climate-Change Impacts Nils Benjamin Tjaden,1 Cyril Caminade,2,3 Carl Beierkuhnlein,1,4,5 and Stephanie Margarete Thomas1,4,* Vector-bornediseasesareontheriseglobally.Astheconsequencesofclimate Highlights change are becoming evident, climate-based models of disease risk are of Theuseofensemblesofdifferentcli- growing importance. Here, we review the current state-of-the-art in both matemodelsforfutureprojections,as wellasmultipledifferentmechanisticor mechanisticandcorrelativediseasemodelling,thedatadrivingthesemodels, correlativediseasemodelsperstudy, thevectorsanddiseasescovered,andclimatemodelsappliedtoassessfuture isincreasing. risk.Wefindthatmodellingtechniqueshaveadvancedconsiderably,especially Communicating uncertainties related in terms of using ensembles of climate models and scenarios. Effects of to disease models, different climate extreme events, precipitation regimes, and seasonality on diseases are still models,andemissionandpopulation pathwaystoendusersisbecominga poorly studied. Thorough validation of models is still a challenge and is com- commonthingtodo. plicated by a lack of field and laboratory data. On a larger scale, the main challenges today lie in cross-disciplinary and cross-sectoral transfer of data Most models tend to project an and [448_TD$DIFF]methods. increasedriskforvector-bornedisease (VBD) transmission at high latitudes and elevations during the upcoming century. Spatiotemporal Models of Vector-[436_TD$DIFF]Borne Diseases under Climate Change: An Overview While mechanistic models typically coverthewholechainofinfectionby Modelling spatial patterns and temporal trends in vector-borne diseases (VBDs[452_TD$DIFF]; see default, most environmental niche Glossary) has been done through a diversity of approaches. This field of research is very [449_TD$DIFF]models (ENMs) still focus on vector activeandshowsarapidmethodologicaldevelopmentwithregardtotheinclusionofvarious distributions alone; they are increas- inglyappliedtowhole[450_TD$DIFF]diseasesystems drivers of diseases. aswell. Modelsappliedinthisfieldarecommonlydividedintotwogroups.First,‘correlative’models predict a species’ geographic distribution or support the understanding of why populations persist at a certain place. Thereby, both vector and pathogen occurrences can be used as response parameters. For this, various approaches, ranging from simple regression to advanced machine-learning techniques,are employed [1]. 1DepartmentofBiogeography, Secondly, ‘mechanistic’ or process-based models make explicit assumptions about the UniversityofBayreuth,Germany 2InstituteofInfectionandGlobal biological [2] and environmental mechanisms that drive species’ distributions or infection Health,UniversityofLiverpool,UK dynamics.Inepidemiology,thesemodelsaremainlyderivedfromtheRoss–MacDonaldmodel 3NIHR,HealthProtectionResearch UnitinEmergingandZoonotic (compare e.g., [3]). These models are based on a system of differential equations depicting Infections,Liverpool,UK eachinfectiousstageforvectorsand/orhosts.Importantepidemiologicalparameters,suchas 4BayCEER,BayreuthCenterfor vector biting rates, vector development, and mortality rates, and the extrinsic incubation EcologyandEnvironmentalResearch, Bayreuth,Germany period(EIP),largelydependonrainfallandtemperature.Theempiricalrelationshipbetween 5GIB,GeographischesInstitut climateandtheseepidemiologicalparametersisderivedfromlaboratoryand,lessfrequently, Bayreuth,Bayreuth,Germany fieldexperiments. *Correspondence: Theindividualstrengthsandweaknesses,aswellastheunderlyingparadigms,ofthesetwo [email protected] approacheshaveledtoheateddiscourse(compare[4]and[5]). However,bothapproaches (S.M.Thomas). TrendsinParasitology,March2018,Vol.34,No.3 https://doi.org/10.1016/j.pt.2017.11.006 227 ©2017ElsevierLtd.Allrightsreserved. exhibitspecific qualities[2,6],andsome authorsexplorepromisinghybridapproaches(e.g., Glossary [7–9]). Areaunderthecurve(AUC):the areaundertheROCcurve(see Model approaches for VBD risk assessment need to consider both positive and negative below)iscommonlyusedfor assessingamodel’sperformancein aspects of altered climatic conditions across different spatial and temporal scales. Global distinguishingbetween(inthis warmingmayshiftclimaticallysuitableregionsforvectorestablishmentanddiseasetransmis- context)thepresenceorabsenceof siontohigherlatitudesandhigherelevations.Conversely,itmaylimittransmissionofVBDinthe aspecies.AnAUCof1is warmest places, where temperature thresholds for vector or pathogen survival may be considereda‘perfect’model,whilea valueof0.5indicatesthatthemodel exceeded [10,11]. isnotbetterthanarandomguess. Environmentalnichemodel Expectations for long-term climatic trends are mostly robust, particularly as far as average (ENM):amodelthatestimatesthe conditionsinairtemperatureareconcerned.Projectionsonfuturedevelopmentofmedium- ecologicalniche(oraspectsthereof) ofaspeciesbasedonthe termvariability[453_TD$DIFF][manifestedinclimaticphenomenasuchastheNorthAtlanticOscillation(NAO) environmentalconditionsatlocations or the El Niño Southern Oscillation (ENSO[454_TD$DIFF])] are very uncertain [12]. This is a challenge, wherethespeciesisknowntoexist. becauseinterannualandevenmultidecadalclimaticfluctuationsareaffectingVBDtransmis- Itcanbeusedtoexaminespecies– environmentrelationshipsorasa sion in some parts of the world [13]. Furthermore, long-term climatic trends affect the speciesdistributionmodel(SDM)in probabilityofextremetemperatureandrainfallevents,makingthemlessrareinoccurrence ordertopredict(changesin)species andmoreelusive[14].Eventhoughheatorcoldwaves,drought,orfloodingareimportantfor occurrencesinspaceandtime. diseaseemergence,vectorabundance,andpathogentransmissiondynamics,suchevents Extrinsicincubationperiod(EIP): thetimethatneedstopassaftera can hardly be predicted [15]. vector’sinfectiousbloodmealbefore itcantransmitthepathogento Inthisarticlewereviewrecentadvancesinmodellingtheimpactsofclimatechange(Box1)on anotherhost. VBD, providing an overview of the literature published since 2014. We discuss primarily Globalclimatemodelsorgeneral circulationmodels(GCMs): mosquito-bornediseasesthataremonitoredbytheEuropeanCentreforDiseasePrevention modelsthatareusedtosimulatethe and Control (ECDC),focusingon theapplied models aswell asonthe datadrivingthem. earth’sclimateonalargescale(see Box2fordetails). Correlative Models IntergovernmentalPanelon ClimateChange(IPCC):theIPCC Environmentalnichemodels(ENMs),andtheirspatialapplicationasspeciesdistribu- definesitselfasthe‘international tionmodels(SDMs),havebecomeanintegraltoolinthefieldsofbiogeography,ecology, bodyforassessingthescience andconservationbiology.Differentmodellingtoolsandalgorithmswithindividualstrengths relatedtoclimatechange’.Its andweaknessesexist,butthegeneralconceptremainsthesame(Figure1).First,locations assessmentreportsaimtomakethe state-of-the-artinclimateresearch ofatargetspeciesarecollectedinthefieldorderivedfromexistingdata.Somemodelling accessibleforpolicymakersand toolsrequireknowledgeofthelocationswheretargetspeciesaretrulyabsent,butasthisis providethescientificbasisfortheUN difficult to acquire for various reasons [1], pseudo-absence or background data are ClimateConferences. commonly generated instead [16]. The difficulty of finding high-quality presence/absence Receiveroperatingcharacteristic (ROC):theROCcurveisusedwhen dataofvectorsorpathogensisanimportantlimitationforcorrelativenichemodels.Spatial acontinuousmodeloutput(e.g., data representing environmental parameters relevant to the species in question (such as probabilityofpresenceofaspecies) climate, land use, soil type etc.) are acquired, usually in the form of continuous grids istranslatedintobinaryinformation (e.g.,presence/absenceofthe covering the study area. species).Itillustrateshowtheratioof truevs.falsepositivesvarieswith differentthresholdsforthedistinction Box1.ClimateChangeinEurope betweenpositiveandnegative. Duringthe20thcentury,mostofEuropeexperiencedanincreaseinannualsurfaceairtemperatureofabout[442_TD$DIFF]0.8(cid:1)C, Regionalclimatemodels(RCMs): mostlywithastrongerwarminginwinterthaninsummer.Atthesametime,somepartsofsouthernEuropehavedried modelsthatcanbeseenas byasmuchas20%whileprecipitationincreasedby10–40%overnorthernEurope[114].Warmnightanddaytime refinementsofGCMsthatareableto temperatureextremesincreased,coldtemperatureextremesdecreased,andmanyregionsarefacedmorefrequently betterreflectlocalconditionson withheavy-raindays[115].Expectationsforthefuturevarybyregionandseason.Whiletemperaturesaregenerally smallerspatialscales(seeBox2for expectedtoincreaseacrossthecontinent,thiswillbemorepronouncedinthesummerinsouthernEurope(FigureIA) details). andinthewinterinnorthernandeasternEurope(FigureIB).Projectionsforchangesinprecipitationaresubjectto Representativeconcentration relativelyhighuncertainties.Thegeneraltrends,however,arereducedrainfallinthesouthandincreasedprecipitationin pathways(RCPs):RCPssucceed thenorth.Atintermediatelatitudes,thereareopposingeffectsinthedifferentseasons,withdryersummersandwetter theolderSRESscenarios(see winters(FigureIC,D). below). 228 TrendsinParasitology,March2018,Vol.34,No.3 Theseclimaticchangeshaveanimpactonvectors’habitats.Winterwarmingmaypromoteoverwinteringofvectors. SEIR/SIR:susceptible,exposed, Increased precipitation could lead to increased habitat availability due to increased soil moisture, humidity, and infectiousandrecoveredarethe availabilityofnaturalponds.Extremefloodingcanleadtothedestructionofvectors’habitats,throughflushingof stagesofaninfectionanindividual stagnantwaterbodies,butatthesametimeitcancreatenewbreedinggroundswhenthewaterrecedes[116].Lower cantypicallygothrough.Theymake summerrainfallintheMediterraneancouldmakesuitablebreedingsitesscarce(cid:3)orhavetheoppositeeffectifitleadsto upthedifferentcompartmentsofa moreopencontainersbeingusedforwatersupplyandirrigation. typicalmechanisticdiseasemodel. SpecialReportonEmissions Scenarios(SRES):thisreport, publishedbytheIPCC,introduceda (A) (B) rangeofscenariosforhowemissions ofgreenhousegasesmaychangein thefuture,dependingonhow mankindreactstothechallengesof climatechange.Thesescenarios havebeenthebasisforIPCC assessmentreports,policymaking, andclimatemodelling,butbynow havebeensupersededbythe representativeconcentration pathways(RCPs). Speciesdistributionmodel(SDM): SDMsareusedtoestimatethe 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 °C °C geographicaldistributionofaspecies (orothertaxonomicrank).Theyare (C) (D) often,butnotalways,basedonan environmentnichemodel(ENM). Vector-bornediseases(VBDs): illnessesinhumansorother vertebratesthataremainly transmittedbyotheranimals(cid:3)often bloodsuckinginsectssuchas mosquitoes. -250 -200 -150 -100 -50 0 50 100 150 200 250 -250 -200 -150 -100 -50 0 50 100 150 200 250 mm mm FigureI.ClimateChangeinEurope.Simulateddifferencesintemperature(A,B)andrainfall(C,D)between2065and 2085,andbetween1961and1999,undertherepresentativeconcentrationpathway(RCP)4.5scenariobasedon16 globalclimatemodel(GCM).A,C.Borealsummer(June–August).B,D.Borealwinter(December–February).Cross hatchingindicatesareasofhighuncertaintyduetolowagreementofthedifferentGCMs. In the second step, a multivariate regression model is created. From an ecological per- spective, loosely following the Hutchinsonian niche concept [17], this can be seen as constructingavirtualspacerepresentingallpossiblecombinationsofvaluesofthechosen environmental parameters. From the location of the presence (and, when available, absence)ofrecordswithinthisenvironmentalspace,theenvironmentalnicheofthetarget species is constructed using methods ranging from simple multiple linear regression models to advanced machine-learning techniques. This model of the species’ preferred environmentalconditionsisthenprojectedbackintogeographicalspace,producingamap depictinghowsuitabletheenvironmentalconditionsareforthespeciesineachgridcellof the study area. Since functional features, such as dispersal barriers, cannot be directly included in this kind of model, environmental suitability cannot be easily translated into probability of occurrence. Instead, it should be perceived as an indicator for a particular species’abilitytosurviveatagivenlocationifsomeindividualsweretoreachthisplace.On TrendsinParasitology,March2018,Vol.34,No.3 229 (A)Occurrences (B) Predictors pp11 p1 p2 p3 (D)Spa(cid:2)al projec(cid:2)on and model valida(cid:2)on (C) Model fit 1.0 0.8 p1 0.6 0.4 0.6 0.2 y0.0 bilit −10 0 10 20 30 40°C (E) Climate scenario al suita00..46 p2 ent0.2 mperature change 6420....0000 °°°°CCCC POeps(cid:2)smimisis(cid:2)(cid:2)cc 222000333000sss 222000337000sss Environm00100.....08046 −40 −20 0p320°C Te-2.0 °C 00..20 1950 2000 2050 2100 0 2000 6000mm Year (F) Spa(cid:2)otemporal change Op(cid:2)mis(cid:2)c 2030s Op(cid:2)mis(cid:2)c 2070s Pessimis(cid:2)c 2030s Pessimis(cid:2)c 2070s Figure1.CharacteristicWorkflowofanEnvironmentalNicheModel(ENM).(A)Occurrencerecordsforthe vector,host,ordiseaseinquestionareacquired.(B)Asetofpredictorvariablesselected(hereexemplarily:p1=summer temperaturein(cid:1)C,p2=wintertemperaturein(cid:1)C,p3=annualprecipitationinmm).(C)Basedonthesefactors,thebestfit model that describes the probability of occurrence of the species in (multivariate) dependence to its environmental conditions is developed (here simplified: environmental suitability in dependence of p1–3). Ideally, several different algorithmsareutilized.(D)Aspatialprojectionofthemodelismadebasedonthepredictorvariables.(E)Asetoffuture climatechangescenariosandrelevanttimeframesischosen.Shownhereistheobservedpastandexpectedfuture averagetemperaturechangeovertimeforanoptimistic(blue)andapessimistic(red)climatechangescenario.Color shadingsaroundtheblacklinesshowanestimateoftheuncertainties.(F)Usingdatafromglobalorregionalclimate models,furtherprojectionsfortheselectedscenariosandtimeframes(greyverticalbarsinpanelE)aremade.Ideally, differentclimatemodelsareusedtodrivetheENM. 230 TrendsinParasitology,March2018,Vol.34,No.3 smallerspatialscales,itmaybefeasibletoconductextensivefieldcollectionsofspeciesthat allow for an estimate of abundance rather than just simple presence or absence. Based on thesedata,speciesabundancemodelscanbecreatedinaverysimilarfashion(e.g.,[18]). Inathirdstep,thepreparedmodelcanbeusedtoidentifythespecies’potentialtobecome establishedinotherpartsoftheworldbyusingthesamesetofenvironmentalpredictorsbutfor adifferentregionasareferencefortheprojection.Similarly,projectionsovertimecanbemade byusingenvironmentaldatathatfollowhistoricalemissionsforthepastoremissionscenarios forthefuture[455_TD$DIFF][suchasglobalclimatemodels(GCMs)orregionalclimatemodels(RCMs); Box 2[456_TD$DIFF]]. Inepidemiology,ENMsarecommonlyusedtomapthepotentialdistributionofvectorspecies (Table1).Forsimplediseasesystems,thisalonecangiveareasonablygoodestimateofregions that could be affected by pathogen transmission [1], although abundance models should be preferred whenever possible due to the more differentiated picture they provide. For more complexsystems,suchasthoseconsistingofmultipledifferenthosts,reservoirsand/orvectors, focusing on a single target species is often insufficient, asdifferent species are likely to have different environmental requirements and competence to transmit diseases. In this particular case,thepotentialdistributionsofthedifferentspeciesinvolvedcanbemodelledasseparate components.Theexpectedgeographicalrangesofthesespeciescanthenbeoverlaidinorderto deriveareasofelevatedriskoftransmission[19].Fordiseaseswheretheinvolvedspecies,their contributiontodiseasetransmission,ortheirspatialdistributionareunknown,thedevelopmentof anENMbasedonobservedoccurrenceofthediseasecanbehelpful[1].Inaway,thisapproach considersapathogenanditstransmissionrangeasaspeciesanditsestablishedpopulations. Regarding ectotherm arthropod vectors, this approach has the advantage of being able to additionallyaccountforthermalimpactsonthepathogenitself,suchasthetemperature-depen- denceoftheEIPobservedforseveralviraldiseases[20]. While free and open-source software packages (like dismoi[446_TD$DIFF] or biomod2ii for R; see https:// www.r-project.org/)makethedevelopmentofENMsrelativelyeasyfromatechnicalpointof view.Thereareseveralaspectsthatneedtobeconsideredcarefullyinordertogainmeaningful results [1,21].Theseinclude,forinstance,sampling biasintheoccurrencerecords[22], the regionswherepseudo-absencelocationsaredrawnfrom[23],potentialniche-shiftsofinvasive species[24],and thechoiceof meaningfulenvironmentalpredictors[25,26]. Thorough out-of-sample validation of a model is crucial; and there are numerous evaluation methods available for different kinds of ENM. While these evaluation methods have been reviewedelsewhere[27],itseemsworthpointingoutthattheareaunderthecurve(AUC)of the receiver operating characteristic (ROC), one of the most widely applied evaluation metrics, hasbeencriticized forbeing potentiallymisleading(e.g., [28]). Among the techniques available, Maxent [29] has been by far the most popular choice for studiesofclimatechangeimpactonvector-bornediseasesoverthepastfewyears(Table1). Thisissomewhatsurprisingasthereareseveralotherestablishedmethodsavailable[458_TD$DIFF][suchas Bioclim, Boosted Regression Trees (BRT), Random Forest (RF), Generalized Linear Models (GLM), Generalized Additive Models (GAM), or Genetic Algorithm for Rule-set Production (GARP)] and from the numerous studies comparing their performances (e.g., [30–32]) no preferential method has emerged so far. Consequently, there is a new trend towards using an ensemble of different ENMs to make up for the uncertainties inherent to the individual algorithms [31,33]. TrendsinParasitology,March2018,Vol.34,No.3 231 Box2.ClimateModelsandScenarios Generalcirculationmodels(GCMs),alsocalledglobalclimatemodels,areusedtosimulatetheearth’sclimateatlarge spatialscalesandestimateitslong-termfuturedevelopment.Theyusuallyconsistofseveralcoupledcomponentssuch astheatmosphere,oceandynamics,seaice,andvegetation.Internationaleffortsinclimatemodellingarecoordinated throughtheCoupledModelIntercomparisonProject(CMIP,http://pcmdi-cmip.llnl.gov),andGCMoutputdataare madeavailablethroughthevariousdatanodesoftheEarthSystemGridFederation(ESGF,https://esgf.llnl.gov).Since runningGCMsimulationsiscomputationallyexpensive,somefiner-scaleprocesses,suchasconvection,havetobe heavilyparameterizedinglobal-scalemodels.However,regionalclimatemodels(RCMs)drivenbyaGCMcanbeused tomakeupforthisonsmallerspatialscales.TheCoordinatedRegionalDownscalingExperiment(CORDEX,http:// www.cordex.org)providesacommonframeworkforsuchinitiatives. TheIntergovernmentalPanelonClimateChange(IPCC)providesthescientificbasistoassessclimatechange,suggest adaptationandmitigationstrategies,andhighlightimpactsandfuturerisksfordecision-makers.TheIPCCassessments arecompiledbyhundredsofleadingandvolunteeringscientists,theyundergomultipleroundsofreviewtoensure objectivity, and underlie negotiations at the Conferences of the Parties (COP) of the United Nations Framework Conventionon Climate Change(UNFCCC). Inthe latestassessment, theFifthAssessment Report in 2013, new climate-changescenarios,so-calledrepresentativeconcentrationpathways(RCPs),weredeveloped.Theydescribea widerangeofpossiblemagnitudesofclimatechangebyspecifyingconcentrationsandcorrespondingemissions. Although not directly based on socioeconomic storylines like the former IPCC Special Report on Emissions Scenarios(SRES),theyareadditionallybasedonshort-livedgasesandland-usechanges[117].Thestart-point forallfourRCPscenariosis2006,withabaselinehistoricalperiodfrom1986to2005.TheseRCP[443_TD$DIFF]xscenariosleadtoa definedadditionalradiativeforcingby2100(increaseby[444_TD$DIFF]xW/m2[441_TD$DIFF]),whichcanalsobeexpressedasanincreaseinthe globalmeansurfacetemperaturesfor2081–2100.ThisincreaseforthedifferentRCPsisexpectedtorangebetween [445_TD$DIFF]0.3(cid:1)Cand1.7(cid:1)C(RCP2.6),1.1(cid:1)Cand2.6(cid:1)C(RCP4.5),1.4(cid:1)Cand3.1(cid:1)C(RCP6.0),2.6(cid:1)Cand4.8(cid:1)C(RCP8.5)[118]. Bothglobalandregionalclimatemodelsrelyonthesepathwaysforfutureprojectionsofclimatechange. MostENM-typemodelsappliedindiseasemodellingfocusonvectordistributions(Table1). Among these, the most studied vector genus is Aedes (competent mosquito vector for diseases such as dengue, chikungunya, or Zika) followed by Anopheles (malaria mosquito vectors)andLutzomyia(sandflies,vectorsofleishmaniasis).WhileseveralENM-typemodels for complete disease systems have been published recently [7,34–36], only a few of them featurefutureprojectionsunderclimate-changescenarios[20].Theprojectedfuturechangesin vector ranges vary among species and regions. However, there is a general trend of range expansion towards higher latitudes and altitudes, while some of the regions that are most affected by VBD today may benefit from a decline in environmental suitability under climate change (Table1). ENM-typemodelsarecommonlyappliedacrossallspatialscales.Whenitcomestofuturerisk mapping, however, they are mostly used on larger global to continental scales (Table 1). Consequently,moststudiesuseglobalratherthanregionalclimatemodels.Almosthalfofthe studiesinTable1incorporatedatafrommorethanoneclimatemodel.Thisisgoodpractice,as this leadsto betterestimatesof uncertainty in finalmodeloutput[37]. Regardingthepredictorsbeingused,mostmodelsrelymainlyonvariousmetricsappliedto temperatureandprecipitation(andcombinationsthereof,suchas‘precipitationofthewarmest month’), both of which have been identified as important drivers of VBD transmission [38]. Some models additionally use other input parameters that may influence host or vector distribution, such as measures of air moisture [39–42], soil moisture [43], topography [42– 45], or land cover/land use [42,43,46]. Socioeconomic factors, such as human population density or vulnerability indicators, can be included as well (e.g., [7]), but continuous future projections of theseare oftennot available,andthey are subjectto largeuncertainties. OnemainadvantageofENMscomparedtomechanisticapproachesisthenon-necessityof detailed knowledge about the complex interplay between environment, vectors, hosts, and 232 TrendsinParasitology,March2018,Vol.34,No.3 Table1.RecentStudiesUsingEnvironmentalNicheModels(ENMs)toAssessVector-[436_TD$DIFF]BorneDiseaseRiskunderClimateChange Vector/pathogen ENM Climatemodela/scenariob/ Environmental Country,region Mainfindings Refs modelled futuretimeperiodc variables Aedesaegypti MaxLike NAd/RCP4.5,RCP8.5/ te,pf Veracruz,Mexico Datafromtheedgesofthevector’sdistributionis [97] current,2020s,2080s valuablefor -monitoringchangesindistribution -understandinglinksbetweenanthropogenic driversandclimatechange Climateenvelope GCM:CCCma-CGCM2, t,p Global -macroclimateisthemaindriverofthespecies [98] CSIRO-MK2,NIES99,UKMO- rangelimits HadCM3/A2a,B2b/2020s -anthropogenicinfluencecanhelpthespeciesto surviveinotherwiseunsuitableclimate Maxent NA/A2a/2050s t,p Brazil -thevector’srangeinBrazilwilldecreaseinthe [99] future,butwillspreadfurthersouth Maxent GCM:NA/NA(CMIP5)/2020s, t,p Tanzania -riskfordengueiscurrentlyconcentratedinthe [100] 2050s coastalareas -large-scalespreadisprojectedfor2050s Aedesaegypti,Aedes Biomod2 GCM:HadGEM2-ES/RCP8.5/ t,p,NDVIg Global -Zika’sdistributionmaybefarmoreconstrained [80] africanus,Aedesalbopictus ensemblemodel 2050s thandengue -Zikaisunlikelytobecomecosmopolitanin temperateregions Aedesaegypti,Aedes Maxent 6GCM/B1,A1B,A2/2050s t,p Global -complexglobalrearrangementsofpotential [101] albopictus distributionalareasunderclimatechange -digitizationandsharingofexistingdistributional dataforvectorsneedstobeapriority Aedesalbopictus GARP GCM:MPI-ESM-LR/RCP4.5/ t,p Mexico,US, -ENMfitonoccurrencedatafromdifferentregions [102] 2050s,2070s Italy,Brazil,Asia transfertoMexicowell Maxent RCM:COSMO-CLM/A1B/ t,p,cargo Europe -combiningENMwithmeasuresofcargo [103] 2020s,2050s,2080s movement movementcanhelptoidentifyhotspotsfor potentialareasofintroduction T -availabilityoftransportdatainEuropeneedstobe ren improved d s in Maxent GCM:CSIRO-Mk3.6.0/RCP t,p Germany -establishmentinGermanyispossible [104] P ara 2.6,4.5,6.0,8.5/ -northwardrangeexpansionunderclimatechange sito 2030s,2050s,2070s lo gy, Anophelesarabiensis LOBAG-OC GCM:HadleyCM3/A1B,A2A, t,p Africa -thesuitablerangeforthevectorinAfricawillbe [105] M B2A/2050s stronglyreducedunderclimatechange a rc h2 Anophelesdarlingi,Anopheles Maxent GCM:GISS-E2-R,HadGEM2- t,p, SouthAmerica -vectorsareprojectedtoexperiencerange [43] 018 nuneztovari AO/RCP2.6/2050s,2070s topoh,soilmoisture, expansionunderclimatechange ,V popi,lcovj o l. 34 Anophelesspp. Maxent,BRT GCM:GISS-E2-R,HadGEM2- t,p, SouthAmerica -currentmainvectorwillexperiencereduced [44] , No ES/RCP8.5/2070s topo,terrestrial habitatsuitabilityunderclimatechange .3 biomes -otherspeciesofthegenusshowsignificant 2 potentialforexpansion 3 3 2 3 Table1.(continued) 4 Vector/pathogen ENM Climatemodela/scenariob/ Environmental Country,region Mainfindings Refs T ren modelled futuretimeperiodc variables d s in Anopheles,An.dirus,An. Maxent GCM:BCC-CSM1-1, t,p,lcov China -thedifferentvectorspecies’rangeswillreact [46] P a minimus,An.lesteri,An. CCCma_CanESM2,CSIRO- differentlytoclimatechange ra sito sinensis Mk3.6.0/RCP2.6,4.5,8.5/ -anoverallnetincreaseinthepopulationexposed lo 2030s,2050s tothevectorsisexpected g y, M Culicoidesimicola,C.insignis, Maxent 62GCM/RCP2.6,4.5,6.0, t,p Global -potentialdistributionisprojectedtobroaden [106] a rc C.variipennis,C.sonorensis, 8.5/2050s underclimatechange,especiallyincentralAfrica, h 20 C.occidentalis,C.brevitarsis UnitedStatesandwesternRussia 1 8 ,V Culicoidesimicola CLIMEX GCM:CSIRO-MK3.0,Miroc- t,p,rhk[437_TD$DIFF],irrigation Global -vector’spotentialdistributionunderclimate [41] o l. h/A1B,A2/1975,2030s, changeisprojectedtoexpandnorthwardinthe 3 4, 2070s northernhemisphere N o. -potentialdistributionmaycontractinAfrica 3 Culicoidessonorensis Maxent GCM:CanESM2/RCP2.6, t,p,topo,lcov,VPDl NorthAmerica -thecurrentnorthernrangelimitofthevectoris [42] 4.5,8.5/ expectedtoshiftnorthwardunderclimatechange 2030s,2050s Lutzomyiaevansi, Maxent GCM:CSIRO/A2,B2/2020s, t,p, Colombia -therangeofthevectorsisprojectedtodecrease [45] Lutzomyialongipalpis 2050s,2080s topo insizeunderclimatechange Lutzomyiaintermedia, GLM,MaxEnt, GCM:HadGEM2-ES/RCP t,p SouthAmerica -thedifferentvectorspeciesshowadifferent [81] Lutzomyianeivai RF,SVM,GARP 4.5,8.5/2050s responsetoclimatechange -‘Ecologicalnichemodelsshouldbespecies specific,carefullyselectedandcombinedinan ensembleapproach.’ Lutzomyiaflaviscutellata 6SDM 17GCM/RCP4.5,8.5/2050s t,p [N/n]orthern -thesuitableareaforthevectorisprojectedto [82] SouthAmerica expandtowardshigherlatitudesandaltitudes underclimatechange Lutzomyiamajor, biomod2 GCM:MPI-ESM-LR/RCP4.5/ t,p Libya -coastalregionsofLibyashowhigherriskbecause [107] Lutzomyiatropica ensemblemodel 2050s ofmoresuitableclimate -riskofcutaneousleishmaniasisisprojectedto increaseunderclimatechange Chikungunya Maxent 5GCM/RCP4.5,8.5/2030s, t,p,pop Global -transmissionpotentialisprojectedtoincrease [20] 2050s,2070s acrosstheglobeunderclimatechange -somepartsofIndiamayseearelativedecreasein transmission aNamesoftheclimatemodelsbeingused(RCMorGCM,seeGlossaryandBox1),unlesstheirnumberexceeds5. bClimatechangescenario:typicallyRCPsand/orscenariosfollowingSREP,seeGlossary. c2030setc.=marksthecenterofthe30-yeartimeperiodcovered,standsfor2021–2040or2020–2039dependingondatasource. dNA=informationnotavailable. et=temperature. fp=precipitation. gNDVI=normalizeddifferencevegetationindex. htopo=topography(elevation,altitude,slope,aspectratio). ipop=humanpopulationdensity. jlcov=landcover,landuse. krh=relativehumidity. lVPD=vapourpressuredeficit. pathogens[1].Thismakesthemapracticaltoolforunderstudied,thatis,‘neglected’VBDs. However, this comes at the price of accuracy, and consequently ENMs are most useful on mediumtolargespatialscales.Ifatleastsomeoftheenvironment-dependentmechanismsare known,thosecanbeusedtorefinetheresults[47].Andfinally,estimatesofdistributionsor abundancesofhostandvectorspeciesderivedfromENMscanalsoserveasinputdatafor mechanisticmodels [9]. Mechanistic Models Mechanistic models are built on biophysical relationships between environmental factors vectors, pathogens, and hosts (Figure 2). These relationships are generally derived from laboratory-orfield-basedstudies(seealsosection‘AdaptionandEvolution’).Differentmecha- nistic approaches can be applied. The most common methodology is derived from the standardRoss–MacDonaldmodel[3]oritsgeneralization.Asetofdifferentialequationsdefine thedifferentcompartmentalstagesofvectorsandhosts(susceptible,exposed,infectious,and recoveredforSEIRmodels,orsusceptible,infectious,andrecoveredforSIRmodels).Thisset ofequationscanbedirectlyutilizedtomodelthepopulationsizeineachcompartment,based on their relationship to climatic factors [48]. The steady-state solution of this system of differentialequationsalsoyieldsthebasicreproductionnumber,R R iscommonlyemployed 0. 0 inepidemiologytoestimatethepropensityofanoutbreaktoexpand(R >1)ortoshrink(R <1) 0 0 inafullysusceptiblepopulation.MathematicalformulationsofR areavailableforseveralVBDs. 0 Theydependonthenumberofvectorsandhostsconsideredinthemodel;see,forexample, [49] for a one-host–one-vector formulation of R for malaria, [50] for a two-host–one-vector 0 formulationofR forAfricantrypanosomiases,or[51]foraone-host–two-vectorformulationof 0 R forZika.Otherempiricalmechanisticmodelsarebasedonenvironmentalriskfactors,such 0 asfuzzylogicmodelstosimulatetheriskofmalaria[52],orempirical-rule-basedmodels,to assess the risk of helminth infections in ruminants based on soil moisture availability and temperature conditions [53]. MechanisticmodelscanbeutilizedtomodeltheriskofVBDsbackwards(usingpastenviron- mental data) or forwards (using demographic, economic, and climate-change scenarios) in time. They are generally driven by daily or monthly climate data to simulate the burden of a particularVBD.Theircomplexityvaries;somemodelsincludeadditionaleffectsofpopulation density,surface hydrology [54],and herdimmunity factors[55]. In terms of methodology, the first necessary step (which is common to all modelling approaches) is model validation. For this purpose, mechanistic models are run for the past, andtheoutputiscomparedtoobservedVBDburdenindicatorsinspaceandtime.Thiscanbe adauntingtaskasthisstepdependsonthequalityandspatiotemporalcoverageofobserved diseaseburdeninformation(prevalence,incidence,numberofconfirmedcasesetc.).Different skillscores(likeAUC,correlations,orreliabilitydiagrams)areemployedtoestimatethemodel capability in reproducing past observed outbreaks and mean seasonality of a VBD. The mechanisticmodelisthenprojectedforwardinspaceandtime,usingcalibratedclimatemodel data outputs and population scenarios, to estimate future human populations at risk (see [56,57] formalaria). AnothersignificantprogressliesinthestudyofhistoricalVBDoutbreaksandtheirrelationship withclimatevariability.AnR modelshowedoptimalclimaticconditionswhenanoutbreakof 0 bluetongueoccurredinnorthernEuropein2006[58].Asimilarmodellingframeworkhighlighted optimalenvironmentalconditionsformosquito-bornetransmissionriskofZikavirusoverSouth Americain2015,whenthelargestoutbreakoccurred[51].Thesefindingsareconsistentwith TrendsinParasitology,March2018,Vol.34,No.3 235 (A)Dynamical model framework > 1 epidemic expands < 1 epidemic shrinks (B)Epidemiological parameters 0.30 a(T) [p.day] 115800 EIP(T) [days] 01..80 μ (T) 23..00 (T) 0.20 120 2.0 0.6 90 1.5 0.4 0.10 60 1.0 30 0.2 0.5 0.00 0 0.0 0.0 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 (D)Climate scenario (C)Integra(cid:2)on + valida(cid:2)on 6.0 °C Pessimis(cid:2)c 222000333000sss 222000337000sss mperature change420...000 °°°CCC Op(cid:2)mis(cid:2)c Te -2.0 °C 1950 2000 2050 2100 Year (E) Future maps - >1 Op(cid:2)mis(cid:2)c 2030s Op(cid:2)mis(cid:2)c 2070s Pessimis(cid:2)c 2030s Pessimis(cid:2)c 2070s Figure2.TypicalWorkflowofaMechanisticDiseaseModelDerivedfromtheRoss–MacDonaldFramework [R0(T)Model].(A)Dynamicalmodelframework.T=temperature((cid:1)C);b=vector–hosttransmissionprobability;b=host- –vectortransmissionprobability;m=vector-to-hostratio;r=recoveryrate;d=infectiousrecoveryrate;a(T)=vector bitingrateperday;EIP(T)=1/y(T)=extrinsicincubationperiodindays;m(T)=vectormortalityrate.(B)Epidemiological parametersderivedfromlaboratoryexperimentsorfielddataarefedintothemodeltogainanestimateofR(T).(C)Arisk 0 mapisderivedfromthemodel.(D)Asetoffutureclimate-changescenariosandrelevanttimeframesischosen.Shown hereistheobservedandexpectedfutureaveragetemperatureincreaseovertimeforanoptimistic(blue)andapessimistic (red)climate-changescenario.Colorshadingsaroundtheblacklinesshowanestimateoftheuncertainties.(E)Usingdata fromglobalorregionalclimatemodels,furtherprojectionsfortheselectedscenariosandtimeframes(greyverticalbarsin panelE)aremade.Ideally,differentclimatemodelsareusedtodrivethemodel. former results by Patz et al. [59], who showed the capability of a mechanistic model to reproducepastdengueoutbreaksoverNicaragua,Honduras,andThailand.Anotheradvan- tageofmechanisticmodelsliesintheirintegrationwithoperationalseasonalclimateforecasting systemsto anticipatetheriskposedby a particularVBD forthe upcomingseason [60–62]. 236 TrendsinParasitology,March2018,Vol.34,No.3

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.