Morphology and mechanical properties of Abdominal Aortic Aneurysms AcataloguerecordisavailablefromtheEindhovenUniversityofTechnologyLibrary ISBN:978-90-386-1057-3 Coverdesign: EvelynevanDam&JorritvanRijt,OranjeVormgevers PrintedbyUniversiteitsdrukkerijTUEindhoven,Eindhoven,TheNetherlands. Thisresearchwas performedinthescopeofthehemodynproject,acooperationbe- tween Philips Medical systems (Healthcare IT - Advanced Development), Best, the TechnischeUniversiteitEindhoven(BiomedicalEngineeringdepartment),Eindhoven andtheErasmusUniversity(Thoraxcenter,BiomedicalEngineering),Rotterdam. The Hemodyn project is partly funded by SenterNovem (Dutch Ministry of economic af- fairs). Morphology and mechanical properties of Abdominal Aortic Aneurysms PROEFSCHRIFT terverkrijgingvandegraadvandoctor aandeTechnischeUniversiteitEindhoven, opgezagvandeRectorMagni(cid:2)cus,prof.dr.ir. C.J.vanDuijn, vooreencommissieaangewezendoorhetCollegevoorPromoties inhetopenbaarteverdedigenop dinsdag3juli2007om16.00uur door Evelyne Andrea van Dam geborenteMaastricht Ditproefschriftisgoedgekeurddoordepromotor: prof.dr.ir. F.N.vandeVosse Copromotoren: dr.ir. M.C.M.Rutten en dr.ir. G.W.M.Peters v -neetzeure,begin,‘thetgennezin gewachttevergeafsop‘nwonder- Vechte,valleenopstoan-RowwenHeze vi Contents Summary ix 1 Introduction 1 1.1 AbdominalAorticAneurysms . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Ruptureriskprediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Objectiveandoutline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 DeterminationofLinearViscoelasticBehaviourofAbdominalAorticAneurysm Thrombus 9 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 MethodsandMaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 Discretetransitiongroup . . . . . . . . . . . . . . . . . . . . . . 13 2.2.3 Continuoustransitiongroup . . . . . . . . . . . . . . . . . . . . 14 2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 Discretetransition . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.2 Continuoustransition . . . . . . . . . . . . . . . . . . . . . . . 17 2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 Non-linear ViscoelasticBehaviourofAbdominal AorticAneurysmThrom- bus 23 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2.2 Theconstitutivemodel . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.3 Determinationofmaterialparameters . . . . . . . . . . . . . . 29 3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.1 Smallstrainexperiments. . . . . . . . . . . . . . . . . . . . . . 33 3.3.2 Largestrainexperiments . . . . . . . . . . . . . . . . . . . . . . 34 3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 vii viii Contents 4 Discrimination ofComponentsofAAAVesselWallbyMulti ContrastMRI 43 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2 MethodsandMaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2.1 MultiContrastMRI . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2.2 (cid:22)CT&histology . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.2.3 Imageanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5 AMixedNumericalExperimentalMethodforMechanicalCharacterisation ofAAAVesselWall 55 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.2 Mixednumericalexperimentalmethod . . . . . . . . . . . . . . . . . . 57 5.2.1 LoadprotocolandMRimaging . . . . . . . . . . . . . . . . . . 58 5.2.2 DigitalImageCorrelation . . . . . . . . . . . . . . . . . . . . . 59 5.2.3 MeshgenerationandFiniteElementModelling . . . . . . . . . 61 5.2.4 Parameterestimation. . . . . . . . . . . . . . . . . . . . . . . . 61 5.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.3.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.3.2 Resultssimulation . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.3.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.3.4 Resultsexperiment . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6 LocalMechanicalPropertiesofAbdominal AorticAneurysms 69 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 7 GeneralDiscussion: TowardsRuptureRiskAnalysis 81 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 7.2 Implicationforwallstressanalyses . . . . . . . . . . . . . . . . . . . . 83 7.3 Limitationsforclinicalapplication . . . . . . . . . . . . . . . . . . . . 87 7.4 Futureaspects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 References 89 Samenvatting 97 Dankwoord 99 Samenvatting 99 CurricilumVitae 101 Morphology and mechanical properties of Abdominal Aortic Aneurysms: Summary AbdominalAorticAneurysm(AAA)ruptureisalife-threateningevent,butcan,when diagnosed timely, be avoided by either endovascular or conventional repair. Since these methods are accompanied by a high mortality rate, the decision to operate should only be made when the rupture risk exceeds the risks of repair. To date, the maximum diameter of the aneurysm is used as a measure for rupture risk and hence as a criterion for surgical intervention. It has, however, been shown already that small aneurysms do rupture sometimes, while some large aneurysms have not rupturedyet,andthereforethediametercriterionalonemaynotbesuf(cid:2)cient. Since rupture of an AAA occurs when locally the wall stress exceeds the strength of the vessel wall, it is generally believed that wall stress distribution could help to better assessAAArupture. Patientspeci(cid:2)cmodelsforwallstresscomputationsdonotonlyrequirethegeometry oftheaneurysmbutalsothemechanicalpropertiesoftheaneurymtissue. Studieson the material propertiesof vessel wall have mainly focused on describing AAA vessel wallandthrombusasahomogeneousmaterial. Localinhomogeneitiescanhavelarge in(cid:3)uences on the stress magnitude and distributions. AAA vessel wall may contain inhomogeneitiessuchascalci(cid:2)cationsandatheroscleroticplaques. Furthermore,the thrombus,whichis presentinthemajority oftheaneurysms mayin(cid:3)uence thelocal mechanics considerably. Itisa layered (cid:2)brinstructure,thatshowsdifferentlevelsof degeneration. Thelevel ofdegenerationof the(cid:2)brin structuremight havein(cid:3)uence onthemechanicalpropertiesofthethrombus. To improve future wall rupture risk prediction based on wall stress, the objective of thisstudyistoobtainthelocalmechanicalpropertiesofboththrombusandtheAAA vesselwall. AAA vessel wall and thrombusare obtainedfrompatients treated with conventional surgery. Theviscoelasticbehaviourofthrombusisdeterminedusingplate-platerheom- ix x Summary etry. To study the changes in mechanical propertiesthroughout the thickness of the thrombus a radially oriented stack of samples was used. In the small strain regime frequency sweep test are peformed and the elastic and viscous moduli are found to beintherangeof1.7(cid:6)1.3kPaand0.2(cid:6)0.1kParespectively. Sincelargedeforma- tionsoccurinthrombusthenon-linearpropertiesaredeterminedbystressrelaxation experiments. Todescribethephenomenaobservedexperimentally,anon-linearmulti modemodelisused. Theparametersforthismodelareobtainedby(cid:2)ttingthismodel successfullytotheexperimentsinboththelinearandnon-linearregime. TodeterminethemorpholgyoftheAAAvesselwall,theapplicabilityofmulticontrast MRItodiscriminate thecomponentsofthevessel wall is studied. Multi contrastMR resultsarecomparedtothegoldenstandards,histologyand(cid:22)CT.Componentslikethe media, calci(cid:2)ed deposits, areas containing cholesterol, thrombus and the adventitia containingfatcellsandvasavasorumcanberecognisedintheMRimages. Theresults obtained so far are not suitable for an automatic classi(cid:2)cation by an unsupervised clusteringalgorithm. To obtain the mechanical properties of the components present in the vessel wall a mixed numerical experimental method is proposed. This method is a robust way to determinethemechanicalpropertiesoftheindividualcomponentswithouthavingto isolatethem. ThemethodisappliedtoAAAvesselwallsamples. Themorphologyisobtainedwith multi contrast MR. The Young’s moduli of media, adventitia, calci(cid:2)cation, an area with cholesterol crystals and thrombus are determined. Although the media is less stiffthantheadventitiathemoduliareinsametheorderofmagnitude((cid:25)1.0MPa). Thestiffnessofthrombusisfoundtobeanorderofmagnitudelower((cid:25)40kPa). An area with a lot of cholesterol is stiffer than the rest of the wall ((cid:25) 7.5 MPa) and a calci(cid:2)edareaisevenstiffer((cid:25)50MPa). Byimplementingthe(cid:2)ndingsforthrombusinapatientspeci(cid:2)cmodelitisshownthat thrombusdoeschangethestressdistributionandpeakwallstresses,buttheeffectis muchlowerthanreportedinliteraturebyothers. Thepresenceofcalci(cid:2)cation hasa largeeffectonthewallstressdistribution. Itisshownthatthewallstressdistribution isin(cid:3)uencedbytheaccuracywithwhichthegeometryofthecalci(cid:2)cationisdecribed. Thelimitedresolutionavailableintheclinicalsetttingresultsinanon-realisticstress distribution. For correct implementation of inhomogeneities of the vessel wall the spatialresolutionofbothimagingtechniquesandcomputationsshouldincrease. The contribution of this work consists not only of the reported morphologies and mechanicalproperties. Theobservationsreportedinthisworkalsosuggestthateffort should be put into development of clinical methods to include the morphology and mechanicalpropertiesoftheaneurysmintotheruptureriskanalysis.
Description: