PWP The long-awaited sequel to the "Concepts and Practice of ZRm Mathematical Finance" has now anived. Taking up where the first volume left off,a range of topics is covered in depth More Extensive sections include portfolio credit derivatives. quasi Monte Carlo, the calibration and implement.ltion of由e L1BOR market model, the acceleration of binomial trees,由e Mathematical Fourier transform in option pricing and much more 之 Throughout Mark Joshi brings his new unique blend of 由eo町, lucidity, practicality and experience to bear on Issues ω 同 Finance relevant to 由e working quantit.ltive analyst. E m E Praise for the Concepts and Practice of 巳 ω Mathematical Finance: 2 - Mark Joshi 咱vershadows many 。由er books available on the same subject" 响 ZentralBlall Math 言 ω "Mark Joshi succeeds admirably -an excellent s臼rting point for a = numerate person in the field of mathematical finance."·· Risk n Magazine m "Very few books provide a balance between financialtheory and practice. This book is one of the few books that strikes 由at ]OME balance." .. SIAM Review ISBN 978-0-9871228-0-3 90000 > i-o- i -nir i -‘ -V-Ac-3- -- 一 一 - 一 - 舍 、 白 n 白 F E-W EdZ、 r 、 J、 - 一 - (cid:157) 一 一 一 PILOTWHALE PRESS 如felbourne www.markjoshi.com @MarkSureshJoshi 2011 Contents This publication is in copyright. Exceptwhere permitted by law, noreproductionofany partmay takeplacewithoutthe written Preface Xlll permission ofthe copyrightholder. Chapter 1. Optionality,convexityand volatility t , I s 1.1. Introduction i t Firstpublished 2011 - 1.2. Volatility andconvexity 1.3. Convexity and optionality 句 3 1.4. Is convexity necessary? 吁 / 0 1.5. Key points 0 0 0 1.6. Furtherreading 0 0 1.7. Exercises Chapter 2. Where does the money go? n y NationalLibrary ofAustralia Cataloguing-in-Publicationentry: 2.1. Introduction ny n υ 2.2. The money bleed tiA" t Author: Joshi,岛1ark, S. 2.3. Analyzingtheexamples i-.. - 2.4. Volatility convexityand theexistenceofsmiles 句 I 1 Title: More mathematical finance /MarkS. Joshi. 22..56.. FKuerythPeorinretsading 句,白付/11111 M ISBN: 9780987122803 (hbk.) 2.7. Exercises 呵, " 2222222 Chapter3. TheBacheliermodel 4 Notes: Includes bibliographical references and index. 3 3.1. Introduction 3呵 Subjects: Finance-Mathematical models. 3.2. The pricingformula 3/呵 3.3. Approximations andcomparisons O Business mathematics. 3.4. Key points 吁 / 3.5. Furtherreading 叮 DeweyNumber: 332.0151 I 3.6. Exercises 竹 / AYAYAY Chapter4. DerivingtheDelta 今 , 4.1. Introduction 由? " 4.2. The stockmeasure ? " iv CONTENTS CONTENTS V 4.3. Homogeneity 30 8.3. Computing theloss distribution in asingle-factormodel 73 4.4. Othercases 31 8.4. Turningloss distributions into prices 74 4.5. Key points 32 8.5. Stochasticrecovery rates 76 4.6. Furtherreading 32 8.6. TheFouriertransform approach 77 4.7. Exercises 32 8.7. Bucketing 78 8.8. Key points 79 Chapter5. Volatility derivatives and model-free dynamic replication 33 8.9. Furtherreading 80 5.1. Introduction 33 8.10. Exercises 80 5.2. Varianceswaps 34 5.3. Pricinggeneral volatility derivatives 36 Chapter9. Impliedcorrelation for portfoliocreditderivatives 81 5.4. Hedgingavolatility derivative 38 9.1. Introduction 81 5.5. Key points 40 9.2. Impliedcorrelations 82 5.6. Furtherreading 40 9.3. Basecorrelation 85 5.7. Exercises 40 9.4. Mappingmethodologies 87 9.5. Hedging and thecomputation ofGreeks 89 Chapter6. Creditderivatives 41 9.6. Key points 91 6.1. Introduction 41 9.7. Furtherreading 92 6.2. The basic instruments 42 9.8. Exercises 92 6.3. The philosophy ofpricingcreditderivatives 46 6.4. Hazard rates 48 Chapter 10. Alternate models for portfoliocreditderivatives 93 6.5. Pricingsimplecreditinstruments 50 10.1. Introduction 93 6.6. Key points 50 10.2. Random factor loadings 95 6.7. Furtherreading 51 10.3. Ellipticcopulas 100 6.8. Exercises 51 10.4. Multiple default processes 102 10.5. Intensity Gamma 104 Chapter7. TheMonte Carlo pricingofportfoliocreditderivatives 53 10.6. Key points 111 7.1. Introduction 53 10.7. Furtherreading 111 7.2. TheLi model 54 10.8. Exercises 111 7.3. Importancesamplingfor basketdefaultswaps 56 7.4. Tranched CDOs byMonte Carlo 59 Chapter 11. Thenon-commutativity ofdiscretization 113 7.5. The defaultdensity in theLi Model 62 11.1. Introduction 113 7.6. Thelikelihood ratio method for basketcreditderivatives 63 11.2. Discretization and risk-neutrality 113 7.7. Thepathwise method for nth-to-defaultswaps 65 11.3. Discretization and Greeks 117 7.8. Key points 67 11.4. Factorreduction 120 7.9. Furtherreading 67 11.5. Importancesampling 122 7.10. Exercises 68 11.6. Coordinatechanges 123 11.7. Calibration 124 Chapter8. Quasi-analytic methods for pricingportfoliocreditderivatives 71 11.8. Key points 127 8.1. Introduction 71 11.9. Furtherreading 127 8.2. Theloss distribution for independentdefaults 72 11.10. Exercises 127 VI CONTENTS CONTENTS Vll l151517222025255 0 Chapter 12. Whatis afactor? 129 Chapter 15. QuasiMonteCarlo Simulation 0 0 12.1. Introduction 129 15.1. Introduction 0 0 12.2. Factors for an implementationoftheL1\在M 130 15.2. Choices and morechoices O A 12.3. Factorreduction 132 15.3. Theproperuse ofSobol numbers Y A 12.4. The numberofcommonfactors 136 15.4. Assessingconvergence U n 12.5. The dimension ofthe spaceattainable 138 15.5. Key points υ A 12.6. Markovian dimension with drifts 142 15.6. Furtherreading υ A 12.7. Markov functional models 144 15.7. Exercises υ 12.8. 1\在atrix separability 146 Chapter 16. Pricing continuous barrier options using ajump-diffusion 12.9. Key points 148 207 model 12.10. Furtherreading 148 207 16.1. Introduction 12.11. Exercises 149 209 16.2. TheMertonjump-diffusion model 16.3. Importancesamplingandstratification 210 Chapter 13. Early exerciseandMonteCarlo Simulation 151 16.4. Thepriceconditional on nojumps occurring 211 13.1. Introduction 151 212 16.5. The algorithm 13.2. A sketchoftheleast-squares method 152 213 16.6. Numerical results 13.3. The details ofthe least-squares algorithm 153 217 16.7. Key points 13.4. Carrying outthe regression 155 218 16.8. Furtherreading 13.5. Breaking acontract 157 218 16.9. Exercises 13.6. Assessing andextending least-squares 159 13.7. Upperbounds and the seller's price 160 Chapter 17. TheFourier-Laplacetransform and option pricing 219 13.8. Recharacterising theoptimal hedge 163 219 17.1. Introduction 13.9. Upper 如ounds for breakablecontracts 165 17.2. Definitions and basic results 219 13.10. Neverexercisesub-optimally 166 17.3. Working with the logforward 228 13.11. Multiplicative upperbounds 167 17.4. TheFouriertransform in log-strikespace 233 13.12. Key points 172 17.5. Thetime-value approach 239 13.13. Furtherreading 172 17.6. The probability decomposition approach 241 13.14. Exercises 172 17.7. Workingwith characteristic functions 242 244 17.8. Known characteristicfunctions Chapter 14. TheBrownian bridge 175 17.9. TheHeston characteristicfunction 247 14.1. Introduction 175 17.10. Numerical implementation 249 14.2. Reducing to thedriftless case 175 17.11. Key points 251 14.3. The law ofthe minimum for aBrownian bridge 177 17.12. Furtherreading 251 14.4. The distribution atintervening times 178 17.13. Exercises 251 14.5. UsingtheBrownian bridgefor path generation 180 253 14.6. The geometric bridge 181 Chapter 18. Thecos method 253 14.7. Key points 183 18.1. Introduction 253 14.8. Furtherreading 183 18.2. Cosineseries 255 14.9. Exercises 183 18.3. Cosineseries andcharacteristicfunctions CONTENTS 1X V11l CONT丑NTS 306 18.4. European option pricing 256 21.11. Exercises 18.5. Homogeneous models and thecos method 259 Chapter22. Adjoint and automaticGreeks 307 18.6. Bermudan options 260 307 22.1. Introduction 18.7. American options 263 22.2. Model Deltas usingthe Giles一Glassermanmethod 308 18.8. Key points 264 22.3. PathwiseVegas intheLMM using theGiles-Glasserman method 311 18.9. Furtherreading 264 313 22.4. Theadjointacceleration 18.10. Exercises 264 22.5. TheLMMas asequenceofvectoroperations 320 Chapter 19. Whatare marketmodels? 265 22.6. Thelimitations oftheadjoint method 322 19.1. Introduction 265 22.7. Forwards versus backwards 323 324 19.2. Thegeneral set-up 266 22.8. Key points 324 19.3. Drifts and martingales 267 22.9. Furtherreading 324 19.4. Calibration 268 22.10. Exercises 19.5. Products 272 Chapter23. Estimatingcorrelationfor theLffiORmarketmodel 327 19.6. Key points 279 327 23.1. Introduction 19.7. Furtherreading 280 327 23.2. The set-up 19.8. Exercises 280 328 23.3. Timeparameterization Chapter20. Discountingin market models 281 23.4. Interactions with boot-strapping 329 331 20.1. Introduction 281 23.5. Factorreduction 332 20.2. Possible numeraires 282 23.6. Other marketmodels 332 20.3. The mostcommon choices and theirconsequences 284 23.7. Time-series step size 333 20.4. Usingthe numeraire todiscount 286 23.8. Correlation smoothing 337 20.5. Numeraire matching,variancereduction and discretization bias 288 23.9. Does itreally matter? 338 20.6. Forwarddiscountingin the spotmeasure 289 23.10. Key points 338 20.7. Key points 290 23.11. Furtherreading 338 20.8. Furtherreading 291 23.12. Exercises 20.9. Exercises 291 Chapter24. Swap-ratemarket models 341 341 Chapter21. Drifts again 293 24.1. Introduction 21.1. Introduction 293 24.2. Deducing thebond-ratiosfor theco-terminal model 342 343 21.2. Rapidcomputation ofdrifts 293 24.3. Cross-variationderivative 346 21.3. Evolving the bond 295 24.4. Swap-ratedriftcomputations 21.4. Positivityissues with bond evolution 297 24.5. Constant maturity marketmodels 348 350 21.5. Predictorcorrector 299 24.6. Co-initial swap-rates 352 21.6. Stopping predictorcorrector 299 24.7. Incremental marketmodels 21.7. Pietersz-Pelsser-Regenmortel 301 24.8. Calibratingtheco-terminal swap-rate marketmodel 356 357 21.8. Numerical comparisonsofdrift methods 303 24.9. Evolvingswap-rates 21.9. Keypoints 305 24.10. LIBORversus swapωrate marketmodels 358 359 21.10. Furtherreading 306 24.11. Key points X CONTENTS CONTENTS Xl 24.12. Furtherreading 360 Chapter 28. Theconvergenceofbinomial trees 407 24.13. Exercises 360 28.1. Introduction 407 28.2. Richardsonextrapolation 408 Chapter25. Calibrating marketmodels 363 28.3. Convergenceofsimple trees forEuropean options 412 25.1. Introduction 363 28.4. Convergencetheorems 414 25.2. Understandingpseudo-squareroots 365 28.5. Redesigningtrees 415 25.3. Decomposingpseudo-roots 367 28.6. The Leisen-Reimertree 417 25.4. Time dependenceandfactor maintenance 368 28.7. Higherorderconvergence 419 25.5. Mappingbetween models and swaption approximations 368 28.8. Codefor higherordertrees 420 25.6. Cascadecalibration 371 28.9. More and more trees 422 25.7. Fittingcaplets andco-terminal swaptions 374 28.10. Choicesfortrees 425 25.8. Rescaling andLMMcalibration 381 28.11. American options 426 25.9. Periodmismatch 383 28.12. Assessing accuracy 428 25.10. Global optimization 385 28.13. Truncation choices 429 25.11. Calibration withdisplacements 386 28.14. Key points 430 25.12. Key points 387 28.15. Furtherreading 430 25.13. Furtherreading 388 28.16. Exercises 430 25.14. Exercises 388 Chapter29. Asymmetry in option pricing 433 Chapter26. Cross-currency market models 389 29.1. Introduction 433 26.1. Introduction 389 29.2. American optionality 434 26.2. Notation 390 29.3. Incomplete markets 437 26.3. Dynamics 390 29.4. Transactioncosts 439 26.4. Understandingcali也ration 393 29.5. Key points 441 26.5. Pricinggiven acalibration 395 29.6. Furtherreading 441 26.6.Approximationfoymulas fofthe voiatiiityoftheforwardFXfate 396 29.7. Exercises 441 26.7. Equity-linkednotes 397 26.8. Key points Chapter30. A perfectmodel? 443 398 26.9. Furtherreading 30.1. Introduction 443 399 26.10. Exercises 30.2. The vanillaoptions trader 444 399 30.3. Dynamic hedging with aperfectmodel 445 Chapter27. 1\在ixture models 30.4. Theportfolio 446 401 27.1. Introduction 30.5. Theexotics trader 447 401 27.2. Uncertain parametermodels 30.6. Key points 447 402 27.3. As asmoothingmethodology 30.7. Furtherreading 448 403 27.4. Theadvantages and disadvantages 30.8. Exercises 448 403 27.5. Key points 404 Chapter31. Thefundamental theorem ofasset pricing. 449 27.6. Furtherreading 405 31.1. Introduction 449 27.7. Exercises 405 31.2. Theeasy direction 450 Xll CONTENTS 31.3. Thehard direction in the discretecase 451 31.4. Attainingthe minimal price 454 31.5. Keypoints 456 31.6. Furtherreading 456 31.7. Exercises 456 AppendixA. ThediscreteFouriertransform 457 Preface A.l. Introduction 457 A.2. Roots ofunity 457 A.3. The discreteFouriertransform 460 A.4. The fastFouriertransform Itisnow ten yearssincethefirstdraftof"theConceptsandPracticeof1\在athe 462 A.5. ThediscreteFouriertransform andconvolutions maticalFinance" was自nished.Thevolumeofresearchpublishedduringthattime 463 A.6. ThefastFouriertransform and matrix multiplication has beenimmense. Newareas havearisenandmanyquestionshavebeenresolved. 464 A.7. Key points Somemarketssuchasportfoliocreditderivativeshavearisen,boomedandcrashed. 466 A.8. Furtherreading "MoreMathematical Finance" is therefore asequel,and itis intended t。如e asec 466 ond orthird bookon financial mathematics. In particular,rather than recall basic Bibliography 467 theory,Iwi出1丑IrefertωO and maximizethe amountofnew material. Index 477 Thissequelisnotintendedtobecomprehensive.Thefieldisnowfartoolarge for such an undertaking to bepractical. In anycase,Iam afirm believerin "write whatyou know."Mostofthe topics in thebookarerelated to my ownresearch in onewayoranother,andIhopetopass onsomeoftheinsightsIhavegainedfrom using and implementing these models.τbme that is the essence ofthe book,my objective is to give the reader my own personal perspectives on how one should view various issues. Thus whilst most ofthe mathematics and models here pre sented can be found somewhere in the literature,the perspectives I present often cannot. Muchofthebookfocusesonnumericalmethods.Apricingmodelisnotmuch useunless itcanbeimplementedandcalibrated. TheabilitytocomputeGreeksis anotheressential. My objective is therefore to show how the mathematics can be translatedintoanimplementable,usablemodel.However,thisisnotarecipebook. AlthoughIpresentalgorithms,myobjectiveistogivethereaderanunderstanding that makes the algorithms clear, rather than to present a piece of pseudo啕code to copy out. I will, however, occasionally point to where the relevant code can be found in the QuantLib open source library. I largely avoid presenting purely numericaltechniques which are well known outsidefinance. Forexample,I leave the details ofhow to carry out Gaussian integration to othertexts. However,I do presentextensivediscussion ofhow to use Sobol numbers for quasi-Monte Carlo simulation,sincethis seems to be amuchmisunderstoodtopic. X111 XIV PREFACE PREFACE XV I have restricted this text to mathematical finance in the sense ofderivatives possible.However,thereareinevitablysomedependenciesandInowdiscussthese. pricing. A more specific butrather unwieldy title might have been "how to think First,thecreditchaptersshouldbereadinorder.Second,theintroductiontomarket about some numerical techniques for pricingderivativecontracts." modelsshouldbereadbeforetheothermarketmodelschapters;theseare,however, At some point, one must call a halt to writing, and many topics t妇at were largely independent ofeach other. Thecross-currency market model chapter(26) considered have not made it in to this book.Tf1ese indude Levy processes, OIS does,ofcourse,assumefamiliaritywithmarketmodels.Third,thecoschapter(18) discounting,SABR,asymptoticexpansionapproximations,solvingSDEs,numer relies on theFourier transform chapter(17). The quasi-Monte Carlochapter (15) ical methods for solvingPDEs,shortrate models,the HJM model, commodities吨 and the importance sampling chapter (16) both depend on the Brownian bridge power derivatives, CGMYSV, GPUs, proxy methods for Greek computation, in; chapter (14). The remaining chapters are largely stand alone and can be read in terPolation methodologies fof interest rates, local volatility, aYITI-value modeh. anyorder. VAR, CES, mean-variance theory, CAPM, utility theory,APT ... The list is end The websitefor this bookis less.Even户ally,whenIagainfeel出atIhaveeno www.markjoshi.com/more i让t will betimetωo write "EvenMoreMathematical日Finance." visit there for updates, questions, new editions, typos and news. Please use the So what topics are covered? I spend four chapters on portfolio credit deriva forum there to askquestions about the textand to inform meoftypos. tIves since it is an area that has gone from obscurity to fame to notoriety in the last few years-I iook at binomial trees in depth since it is a topic which is much Ihaveincludedendofchapterexercises.Thesetakeavarietyofformsranging misunderstood:we wili see that there are at least twenty difemIlt ways to place from simple computations to complicated proofs. Many of them are more com the nodes ofa tree,and thateach ofthese can be implemented in at leastsixteen puterprojects than exercisessinceultimately this bookis about modelling. I have digerentways.MonteCarlotechniquesareexaminedindepthwithcf1aptersonthe not included solutions, but you are encouraged to discuss the problems on the Brownianbridge,quasi-Montecario,theearlyexerciseproblemandstratiacation- book's website. Market modeis for pricingexotic interestrate derivatives have been my prin翻 Various versionsofthemanuscripthavebeenreadbyaratherlargenumberof cipai researcf1interestfor many years.This is reaected bychapters on theirapplim people and I thank them all for their comments. The readers include BarbaraLa cability, drift computation and aPPI-oxiInation, correlation estimation, swap-rate Scala,Will Wright,Chris Beveridge,Jiun Hong Chan, Stephen Chin,Nick Den mafket models,calibration, discounting and cross-currency market models.The son, Andrew Downes,Robert Tang, Chao Yang,Ferdinando Ametrano, Paulius cha户户s on disc削zation, factor reduction, ql邸 Jakubenas,HarryLo,LewBurton,AgustinLebron,OhKang Kwon,AlanLewis, S臼en四sSI山ti叽viti创es with adjoint m丑led妇lo出ds whilst written in a more gener剖a1 context are Nagulan Saravanamuttu,Graeme West,Dherminder Kainth and Lorenzo Lies饨, a剖Isωodirectly relevantto marketmodels. as well as many others. I also include afew chapters on more philosophical questions. These include chapters on asymmetry,evaluating a perfect model, the fundamental theorem of MarkJoshi asset pricing,convexity,mixture models and the money bleed. Melbourne,August2011 Certainchapters have been includedsimply becauseI thinktheresults and/or the mathematics are neatandIwantthem tosharethem withthereader. Thesein cludeachapteronhowtodifferentiatetheBlack-Scholesformula, CHAPTER 1 , Optionality convexity and volatility 1.1. Introduction Forcertaincontracts,increasingvolatilitywillalways increaseprices. Forex ample,in theBlack-Scholes model theVegaofacalloption is always positiveso price must be an increasing function ofvolatility. In the Merton jump-diffusion model,priceisanincreasingfunction ofjumpintensitysoagainincreasinguncer tainty leads to an increase in price. However, there are certainly plenty of contracts with positive pay-offs for which increasing volatility can reduce price. Forexample,ifa digital call option is in-the-money, zero volatility will clearly result in a maximal price. It is also well-knownthatfor barrieroptions,an increasein volatilitycanresultinahigher probability ofknock-o时, and therefore a decrease in value. Similarly, in ajump diffusionmodelincreasingjumpintensitycanresultineitheradecreaseorincrease in pricefor adigital call option,seeChapter 15 of[105]. Ofcourse,one cannotexpect general monotonicity results to hold for digital options,asadigitalcallplusadigitalputofthesamestrikeissimplyazero-coupon bond,which has apriceindependentofvolatility orany otheruncertainty. Weshallseethatconvexityistheimportantpropertyofacalloptionthatmakes monotonicity results work, and that in a sense convexity and optionality are the sameconcept. 1.2. Volatility and convexity We want a more general conceptofincreasing uncertainty thatencompasses both increasing volatility in the Black-Scholes model and increasing intensity in ajump-diffusionmodel. We shall say thata positiverandom variable X is more uncertain than a pos itive random variable Y ifthey can be defined on the same probability space in 2 1.OPTIONALITY,CONVEXITYAND VOLATILITY 1.3.CONVEXITYANDOPTIONALITY 3 such a way that X,defining thefinal stockprice in A is more uncertain than therandom variable, X=YZ, Y,for B. We needto show that withY and Z independent. We also require Z to bepositive. JE(f(X)) 注 JE(f(Y)). Wehave logX = logY +logZ, By definition and risk-neutrality, we can write X = YZ. We write JEy for expectation overY and similarlyfor Z. Wethen have so Var(logX) = Var(logY) 十 Var(logZ). (1.2.1) JE(f(X)) =JE(f(YZ)), NotethatifZ isnotconstantthis immediatelyimpliesthatlogX has highervari (1.2.2) =JEy(JEz(f(YZ))). ancethaniogY.ThisdeanMOIlincludesincreasingvolatilityintheBiacKJcholes Observe that f (Ys) is a convex function of s for each value ofY,so applying world since we have for σ1 注 σ2, that a normal ofstandard deviation is dis 0"1 Jensen's inequality to theexpectationin Z,we have that 甘ibuted as a normal ofstandard deviation ofσ2plusm independentomdsun dard deviation飞/付 -4. (1.2.3) JE(f(X)) 注 JEy(f(YEz(Z))). Forthejump-diffusioncase,increasingjumpintensitycanbeseenintermsof However,we know thattheexpectation ofZ is one and weconclude muitiplying by a random vafiable genefated by thejumps arising fkom a process with intensityequal to thedifference. (1.2.4) JE(f(X)) 注 JEy(f(Y)), th NotethatwhenPI-icingderivatives,theincreasein uncertainty Will notafeet which is whatwe wantedto prove. e meansincethepriceofabrwardcontractmustbeinvariant.Thisimpliesthat Note that we have shown that theBlack-Scholes price ofany derivative with the variable Z must have mean equalt01and we impose this restriction for the a convex pay-offis an increasing function ofvolatility. We have also shown that restofthis section. thesameholds inthejump-diffusionmodel as afunction ofeachofvolatility and We will show that for European options with convex pay-offs, price is an in jumpintensity. creasing function of uncertainty.Recall that a function, f, on an inteIVal U is convex iffor all 叽Y E Uand () E [0,1],wehave that 1.3. Convexityand optionality f(()x 十 (1 - ())y) ζ ()f(x) + (1- ())f(y). Intheprevious section,by invokingJensen's inequality we wereabletoshow Geometrically,thechordbetweenany twopointson thegraphliesonorabovethe that the prices ofEuropean derivatives with convex pay-offs increase with uncer graph. tainty. Inthis section,weexplorethefinance behind thisTesult. Forwhatfollows, YτT、挝h1览er…r1…ω创Ostimpor此t凯antresult台ffrom严pr灿a汕bility出the∞orη')γy吨a灿 itis importantthatwearecarefultomakethedistinction betweenan option anda is Jensenγ's inequali让ty. derivative. Anoptionis achoicebetweenoneoftwo,orpossiblymore,portfolios, THEOREM 1.1. 扩fisaconvexβmction, andX归αrandomν'ariablesuchthat whereas a derivative is the right and obligation to receive a function ofthe stock JE(/X/) isfinite, andJE(lf(X)I) isfinite then price at maturity. All options can be viewed as derivatives simply by taking the function to bethe maximum ofthe portfolio values. JE(f(X)) 注 f(JE(X)). Forexample,a call option is the rightto choosebetween the empty portfolio and a portfolio consisting ofa unit ofstock and - K riskless bonds. A put is the Fora proofsee,forexample,[197]. righttochoosebetweentheemptyportfolioandaportfolioofK bondsandminus Now suppose we have a derivative C paying a convex function f at time T. onestock.Notethatwerequirethecompositionofeachportfoliotobefixed atthe Supposewehavetworisk---neutral models A andB suchthatthemndom variable, start.
Description: