ebook img

More Evidence for the Redshift Dependence of Color from the JLA Supernova Sample Using Redshift Tomography PDF

0.5 MB·
by  Miao Li
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview More Evidence for the Redshift Dependence of Color from the JLA Supernova Sample Using Redshift Tomography

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed4May2016 (MNLATEXstylefilev2.2) More Evidence for the Redshift Dependence of Color from the JLA Supernova Sample Using Redshift Tomography Miao Li1(cid:63), Nan Li1,2,3,4†, Shuang Wang1‡ Zhou Lanjun1,2,3,4§ 1SchoolofAstronomyandSpaceScience,SunYat-SenUniversity,Guangzhou510275,P.R.China 2KeyLaboratoryofTheoreticalPhysics,InstituteofTheoreticalPhysics,ChineseAcademyofSciences,Beijing100190,P.R.China 3KavliInstituteforTheoreticalPhysicsChina,ChineseAcademyofSciences,Beijing100190,P.R.China 4SchoolofPhysicalScience,UniversityofChineseAcademyofScience,Beijing100049,China 6 1 0 2 4May2016 y a M ABSTRACT Inthiswork,byapplyingtheredshifttomographymethodtoJointLight-curveAnalysis 3 (JLA) supernova sample, we explore the possible redshift-dependence of stretch-luminosity ] parameterαandcolor-luminosityparameterβ.ThebasicideaistodividetheJLAsampleinto O differentredshiftbins,assumingthatαandβ arepiecewiseconstants.Then,byconstraining C theΛCDMmodel,wechecktheconsistencyofcosmology-fitresultsgivenbytheSNsample ofeachredshiftbin.Wealsoadoptthesametechniquetoexplorethepossibleevolutionofβ . h in various subsamples of JLA. Using the full JLA data, we find that α is always consistent p with a constant. In contrast, at high redshift β has a significant trend of decreasing, at ∼ - o 3.5σ confidencelevel(CL).Moreover,wefindthatlow-z subsamplefavorsaconstantβ;in r contrast,SDSSandSNLSsubsamplesfavoradecreasingβ at2σ and3.3σ CL,respectively. t s Besides, by using a binned parameterization of β, we study the impacts of β’s evolution on a parameter estimation. We find that compared with a constant β, a varying β yields a larger [ best-fitvalueoffractionalmatterdensityΩ ,whichslightlydeviatesfromthebest-fitresult m0 2 givenbyothercosmologicalobservations.However,forboththevaryingβ andtheconstant v βcases,the1σregionsofΩm0arestillconsistentwiththeresultgivenbyotherobservations. 1 Keywords: cosmology:darkenergy,observations,cosmologicalparameters,supernova 5 4 1 0 . 1 1 INTRODUCTION which consists of 740 supernovae (SNe). JLA data includes 118 0 SNe at 0 < z < 0.1 from several low-redshift samples (Hamuy 6 Type Ia supernova (SN Ia) is a sub-category of cataclysmic vari- etal.1996;Riessetal.1999;Jhaetal. 2006;Contrerasetal.2010; 1 ablestarsthatresultsfromtheviolentexplosionofawhitedwarf Hickenetal. 2009a,b),374SNeat0.03<z<0.4fromtheSloan : star in a binary system Hillebrandt, & Niemeyer (2000). It can v DigitalSkySurvey(SDSS)SNsearchHoltamanetal.(2008),239 be used as standard candles to measure the expansion history i SNeat0.1<z <1.1fromtheSupernovaLegacySurvey(SNLS) X of the universe Riess et al. (1998); Perlmutter et al. (1999), observationsGuyetal.(2010)and9SNeat0.8 < z < 1.3from and it has become one of the most powerful tools to probe r Hubble Space Telescope (HST) Riess et al. (2007). It should be a the nature of dark energy (DE) Frieman et al. (2008); Wang stressedthat,intheprocessofcosmology-fits,Betouleetal.treated (2010); Li et al. (2011, 2013); Weinberg et al. (2013). In recent twoimportantquantities,stretch-luminosityparameterαandcolor- years, several supernova (SN) datasets have been released, such luminosityparameterβofSNIa,asfreemodelparametersBetoule as“SNLS”Astieretal. (2006),“Union”Kowalskietal. (2008), etal. (2014).ThisprocedureissameastherecipeofConleyetal. “Constitution” Hicken et al. (2009a,b), “SDSS” Kessler et al. (2011). (2009),“Union2”Amanullahetal. (2010),“SNLS3”Conleyetal. (2011)and“Union2.1”Suzukietal. (2012).ThelatestSNsample The early proposals to use SN Ia as standard candles made is“JointLight-curveAnalysis”(JLA)datasetBetouleetal. (2014), an assumption that the early samples were too small to test. By now SN samples are large enough for many meaningful tests to bedone.Oneofthemostimportanttestsistoprobethepossibil- ityofredshift-dependenceofαandβ.Sofar,thereisnoevidence (cid:63) [email protected] fortheevolutionofα.Buttheredshift-dependenceofβ hasbeen † [email protected][email protected](Correspondingauthor) foundforseveralSNdatasets.Forexamples,byusingthebin-by- § [email protected] binmethod,Marrineretal.foundtheredshift-dependenceofβfor (cid:13)c 0000RAS 2 MiaoLietal. theSDSSdataMarrineretal. (2011).Besides,byadoptingalinear wherem(cid:63) istheobservedpeakmagnitudeintherest-frameofthe B β, Mohlabeng and Ralston found the evolution of β at 7σ con- B band, X describes the time stretching of light-curve, C de- 1 fidence level (CL) for the Union2.1 data Mohlabeng & Ralston scribes the supernova color at maximum brightness and M is B (2013).Inaddition,oneofthepresentauthorshadalsodonease- theabsoluteB-bandmagnitude,whichdependsonthehostgalaxy riesofresearchworksaboutthisissue.InWang&Wang (2013a), propertiesSchlafly&Finkbeiner(2011);Johanssonetal. (2013). wefoundthatβdeviatesfromaconstantat6σCLfortheSNLS3 NoticethatM isrelatedtothehoststellarmass(M )bya B stellar data.Soonafter,bystudyingvariousDEandmodifiedgravitymod- simplestepfunctionBetouleetal. (2014) elswithalinearβWangetal. (2014);Wang,etal. (2014);Wang etal. (2014);Wangetal. (2015),wefoundthattheevolutionof M =(cid:26) MB1 if Mstellar <1010M(cid:12), (5) βhassignificanteffectsonparameterestimation,andtheintroduc- B MB2 otherwise. tionofatime-varyingβcanreducethetensionbetweenSNIaand HereM isthemassofsun. othercosmologicalobservations. (cid:12) Theχ2ofJLAdatacanbecalculatedas In a recent work Shariff et al. (2015), the discussion about time-varying β has been extended into the case of JLA data. By χ2 =∆µT ·Cov−1·∆µ, (6) adopting two specific parameterizations of β, Shariff et al. found 4.6σCLevidenceforasignificantdropinβ atredshiftz = 0.66 where ∆µ ≡ µ −µ is the data vector and Cov is the total obs th Shariff et al. (2015). It should be pointed out that, the results of covariancematrix,whichisgivenby Shariffetal. (2015)dependontwoparticularparameterizationsof β.Tofurtherinvestigatethepossibleredshift-dependenceofβ,itis Cov=Dstat+Cstat+Csys. (7) necessarytorevisitthisissueusingamodel-independentmethod. HereD isthediagonalpartofthestatisticaluncertainty,which Inthiswork,weadopttheredshifttomographymethod,whichhas stat isgivenbyBetouleetal. (2014), beenwidelyusedintheinvestigationofcosmologyMarrineretal. (2011);Caietal. (2014);Giannantonioetal (2015).Thebasicidea (cid:20) 5 (cid:21)2 istodividetheSNdataintodifferentredshiftbins,assumingthat Dstat,ii = z ln10 σz2,i+σi2nt+σl2ensing+σm2B,i i bothαandβarepiecewiseconstants.Itshouldbepointedoutthat, +α2σ2 +β2σ2 +2αC −2βC adoptingtheredshift tomographymethodwillreduce thestatisti- X1,i C,i mBX1,i mBC,i cal significance. Then we constrain Λ-cold-dark-matter (ΛCDM) −2αβCX1C,i, (8) modelandchecktheconsistencyofcosmology-fitresultsineach where the first three terms account for the uncertainty in redshift bin.Inaddition,itisveryinterestingtoexplorethepossibleevo- duetopeculiarvelocities,theintrinsicvariationinSNmagnitude lutionofβ invarioussubsamplesofJLA.Asfarasweknow,this and the variation of magnitudes caused by gravitational lensing. issuehasnotbeenstudiedinthepast.Therefore,wealsoapplythe σ2 , σ2 , and σ2 denote the uncertainties of m , X and sametechniquetovarioussubsamplesofJLA.Moreover,itisim- mB,i X1,i C,i B 1 C forthei-thSN.Inaddition,C ,C andC are portanttostudytheimpactsofpossibleredshift-dependenceofβ mBX1,i mBC,i X1C,i thecovariancesbetweenm ,X andCforthei-thSN.Moreover, ontheparameterestimation.Todothis,weadoptabinnedparam- B 1 C andC arethestatisticalandthesystematiccovariancema- eterizationofβintheanalysis. stat sys trices,givenby We describe our method in section 2, present our results in section3,andsummarizeinsection4. C +C =V +α2V +β2V +2αV −2βV −2αβV , (9) stat sys 0 a b 0a 0b ab where V , V , V , V , V and V are ma- 0 a b 0a 0b ab 2 METHODOLOGY trices given by the JLA group at the link: http://supernovae.in2p3.fr/sdss snls jla/ReadMe.html. For Inthissection,wefirstlyintroducehowtocalculatetheχ2function − − thedetaileddiscussionsaboutJLASNsample,seeRef.Betouleet ofJLAdata.Then,wedescribethedetailsoftheredshifttomogra- al. (2014). phymethod. AspointedoutinBetouleetal. (2014),intheprocessofcal- Theoretically,thedistancemodulusµ inaflatuniversecan th culatingχ2,boththeHubbleconstantH andtheabsoluteB-band bewrittenas 0 magnitudeM aremarginalized.Inthiswork,wefollowtheproce- (cid:20) (cid:21) B d (z ,z ) µ =5log L hel cmb +25, (1) dureofBetouleetal. (2014),anddonottreatH0andMB asfree th 10 Mpc parameters. We refer the reader to Ref. Betoule et al. (2014), as wherez andz aretheCMBrestframeandheliocentricred- wellasthecodeoftheJLAlikelihoodforthedetailsofcalculation. cmb hel shiftsofSN.Theluminositydistanced isgivenby Asmentionedabove,ouraimistoexplorethepossibleevo- L dL(zhel,zcmb)= (1+Hzhel)c(cid:90) zcmb Ed(zz), (2) laudtoiopnttohfeSrNedsuhsiifntgtoammoogdraepl-hinydmepeethnodden.tTmheetbhaosdic.Iindetahiisswtoordkiv,iwdee 0 0 theSNsampleintodifferentredshiftbins,assumingthatbothαand wherecisthespeedoflight,H0istheHubbleconstantandE(z)≡ β are are piecewise constants. Then, by constraining the ΛCDM H(z)/H0isthereducedHubbleparameter.ForΛCDM,E(z)can model,wechecktheconsistencyofcosmology-fitresultsgivenby bewrittenas theSNsampleofeachredshiftbin.Moreover,toensurethatourre- E(z)=(cid:112)Ω (1+z)3+(1−Ω ). (3) sultsareinsensitivetothedetailsofredshifttomography,weevenly m0 m0 divide the JLA sample at redshift region [0,1] into 3 bins, 4 bins HereΩ isthepresentfractionalmatterdensity. m0 and 5 bins, respectively; then, we compare the fitting results ob- Theobservationofdistancemodulusµ isgivenbyaem- obs tainedfromthesethreecases.InthisworkweperformaMCMC piricallinearrelation: likelihoodanalysisusingthe“CosmoMC”package(Lewis&Bri- µ =m(cid:63) −M +α×X −β×C, (4) dle2002). obs B B 1 (cid:13)c 0000RAS,MNRAS000,000–000 MoreEvidencefortheRedshiftDependenceofColorfromtheJLASupernovaSampleUsingRedshiftTomography 3 3 RESULT sistentwithaconstant.ForthecaseofSDSS,the1σupperbound ofβinthelastbindeviatesfromtheresultsgivenbythefullSDSS Inthissection,wemainlyfocusontheevolutionbehaviorsoflu- subsample at 2σ CL, showing that the SDSS subsample favors a minosity standardization parameters α and β. Firstly, we present decreasing β at high redshift. This conclusion is consistent with theresultsgivenbythefullJLAsample;then,wepresentthere- theresultsofMarrineretal. (2011).ForthecaseofSNLS,the1σ sultsgivenbyvarioussubsamplesofJLA;finally,wediscussthe upperboundsofβ inthethirdbinandthefourthbindeviatefrom impactsoftime-varyingβonparameterestimation. the results of the full SNLS subsample at 1.6σ and 3.3σ CL, re- In Fig 1, we plot the 1σ confidence regions of α given by spectively.SocomparedwiththecaseofSDSS,theSNLSsubsam- the full JLA sample. The results of 3 bins, 4 bins and 5 bins are plefavorsatime-varyingβwithalargerdecreasingrate.Itshould shownintheupperleftpanel,theupperrightpanelandthelower bementionedthat,thisconclusionisdifferentfromtheresultsof panelofFig1,respectively.Forallthepanels,itcanbeseenthat the full SNLS3 sample Wang & Wang (2013a). This means that the 1σ regions of α given by the full JLA sample (gray region) SNLS3datasetmayexistsomeunknownsystematicuncertainties overlap with the results given by the SN samples of various bins Betouleetal. (2014). at1σCL.Sowecanconcludethatαisconsistentwithaconstant. InFig4,wecomparethe1σconfidenceregionsofβgivenby Sincethisconclusionholdstrueforallthecasesof3bins,4bins the“JLAwithoutHST”data(leftpanel)withtheresultsgivenby and5bins.wecanconcludethatitisinsensitivetothedetailsof thefullJLAsample(rightpanel).WecanseethattheHSTsubsam- redshifttomography.Thisconclusionisconsistentwiththeresults pleonlyaffectstheevolutionbehaviorofβathighredshift.Forthe ofpreviousstudiesMarrineretal. (2011);Mohlabeng&Ralston casewithoutHST,the1σupperboundofβinthelastbindeviates (2013);Wang&Wang (2013a);Shariffetal. (2015). fromtheresultsgivenbythefullsampleat3.9σCL.Forthecase InFig2,weplotthe1σconfidenceregionsofβgivenbythe offullJLAsample,the1σupperboundofβinthelastbindeviates fullJLAsample.Theresultsof3bins,4binsand5binsareshown fromtheresultsgivenbythefullJLAsampleat3.6σCL.Thisin- intheupperleftpanel,theupperrightpanelandthelowerpanelof dicatesthatHSTsubsamplecanslightlyslowdownthedecreasing Fig2,respectively.Itcanbeseenthat,althoughβisconsistentwith rateofβathighredshift. aconstantatlowredshift,ithasasignificanttrendofdecreasingat Next,wediscusstheimpactsofavaryingβontheparameter highredshift.Forthecaseof3bins,the1σupperboundofβinthe estimation. For simplicity, here we consider the standard cosmo- lastbindeviatesfromtheresultsgivenbythefullJLAsampleat logicalmodel:theΛCDMmodel.AsshowninFig2,β perfersa 3.5σCL.Forthecaseof4bins,the1σupperboundofβinthelast highervalueatlowredshiftandalowervalueathighredshift.So bindeviatesfromtheresultsgivenbythefullJLAsampleat3.6σ weassumethatβ isrelatedtotheredshiftbyasimplepiecewise CL.Forthecaseof5bins,thereisahintfortheevolutionofβfor function thefourthbin;moreover,the1σ upperboundofβ inthelastbin deviatesfromtheresultsgivenbythefullJLAsampleat3.6σCL. β(z)=(cid:26) β1 0<z(cid:54)0.75, (10) Theseresultsindicatethatthereisa∼3.5σ CLevidenceforthe β2 0.75<z decreaseofβathighredshift,whichisinsensitivetothedetailsof where β and β are two model parameters. In Fig 5, by using redshifttomography1.Itmustbestressedthat,thisconclusionis 1 2 thefullJLAsampleonly,weplotthe1Dmarginalizedprobability consistentwiththeresultsofsomeotherSNsamplesMarrineretal. distributionsofΩ inthecasesofconstantβ andvaryingβ(z). m0 (2011);Mohlabeng&Ralston (2013),butisinconsistentwiththe Itcanbeseenthatvaryingβ yieldsalagerΩ thanthecaseof m0 resultsoftheSNLS3dataset,whichindicatesthatβhasatrendof constantβ:forthecaseofvaryingβ,thebest-fitvalueofΩ is m0 increasingathighredshiftWang&Wang (2013a).Thereasonof 0.329,whileforthecaseofconstantβ,thebest-fitvalueofΩ m0 thistensionisstillunclearanddeservesfurtherstudies. is0.297.NotethatourresultisconsistentwiththeresultsofShar- As mentioned above, JLA dataset includes 118 SNe at 0 < iffetal. (2015).Tomakeacomparison,inFig5wealsoplotthe z < 0.1 from the low-z, 374 SNe at 0.03 < z < 0.4 from the 1DmarginalizedprobabilitydistributionofΩ givenbyacom- m0 SDSS,239SNeat0.1 < z < 1.1fromtheSNLS,and9SNeat binationoftheCMBAdeetal.(2015)2 andtheBaryonAcoustic 0.8<z <1.3fromHST.Itisinterestingtoexploretheevolution Oscillations(BAO)Hemanthaetal.(2014);Wang (2014)data.The ofβ invarioussubsamplesofJLA.Inthispaperweonlydirectly best-fitvalueofΩ givenbyCMB+BAOdatais0.292,whichis m0 applytheredshifttomographymethodtothelow-z,theSDSS,and closertothebest-fitvalueoftheconstantβcase.Thisresultisdif- theSNLSsubsamples,becausetheHSTsubsampleonlycontains9 ferent from the result of the SNLS3 sample Wang et al. (2014). datapoints.TostudytheeffectsofHSTsubsample,wecomparethe However,theresultofΩ forthevaryingβcaseisstillconsistent m0 resultsofthefullJLAsamplewiththeresultsofthe“JLAwithout withtheresultfortheconstantβ case,aswellastheresultgiven HST”data. bytheCMB+BAOdata,at1σCL. IntheFig3,makinguseoftheredshifttomographymethod, weshowthe1σconfidenceregionsofβgivenbyeachsubsample. Theresultsgivenbythelow-z,theSDSS,andtheSNLSsubsam- 4 SUMMARY plesareshownintheupperleftpanel,theupperrightpanel,and thelowerpanelofFig3,respectively.Forsimplicity,hereweonly SNIaisoneofthemostpowerfultoolstoexplorethecurrentcos- considerthecaseof4bins.Forthecaseoflow-z,βisalwayscon- micacceleration.AsthesamplesizeofSNIarapidlygrows,itis veryimportanttoperformvarioustestsfortheseSNsamples.One of the most interesting tests is to probe the possible evolution of 1 Tofurtherconfirmthispoint,wemoveallthebins1/4binwidthtothe SNcolorparameter,whichhasdrawnalotofattentionsinrecent rightand1/4binwidthtotheleft;thenwecheckwhetherornotthereare anysignificantdifferencesforthesetwocases.Itisfoundthatmovingbins insuchawaywillnotyieldanysignificantchanges.Therefore,weconclude 2 InadditiontoAdeetal.(2015),therearesomeotherdistancepriorsdata, thattheconclusionofβ’sevolutionisinsensitivetothedetailsofredshift e.g.seeRefs.Wang&Dai (2015);Huangetal.(2015);Wang&Wang tomography. (2013b). (cid:13)c 0000RAS,MNRAS000,000–000 4 MiaoLietal. 0.16 0.17 0.16 0.15 0.15 0.14 0.14 0.13 α0.13 α 0.12 0.12 0.11 Full JLA 0.10 0.11 Full JLA 0.09 0.10 0.08 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 z z 0.18 0.16 0.14 α0.12 0.10 Full JLA 0.08 0.06 0.0 0.2 0.4 0.6 0.8 1.0 z Figure1.The1σconfidenceregionsofstretch-luminosityparameterαgivenbythefullJLAsampleatredshiftregion[0,1].Theresultsof3bins,4binsand 5binsareshownintheupperleftpanel,theupperrightpanelandthelowerpanel.Thegrayregionandthegraydashedlinedenotethe1σregionandthe best-fitresultgivenbythefullJLAdata.Thered,thegreen,theblue,theyellowandthepurpleregionscorrespondtothe1σregionsofthefirst,thesecond, thethird,thefourthandthefifthbin,respectively. yearsMarrineretal. (2011);Mohlabeng&Ralston (2013);Wang • Ifthelow-zsubsampleofJLAisused,thenaconstantβisfa- &Wang (2013a);Shariffetal. (2015).3 vored.Incontrast,iftheSDSSortheSNLSsubsamplesisadopted, InalatestworkShariffetal. (2015),adoptingtwoparticular thenadecreasingβisfavored.Besides,comparedwithSDSSsub- parameterizationsofβ,Shariffetal.found4.6σCLevidencefora sample,SNLSsubsampleprefersalargerdecreasingrateofβ(see significantdropinβ atredshiftz = 0.66,fortheJLAsample.In Fig3).Itshouldbepointedoutthatthetrajectoryofβgivenbythe thecurrentwork,werevisitthepossibilityofβ’sevolutionbyusing SNLSsubsampleofJLAisquitedifferentfromthepredictionof theredshifttomographymethod.InadditiontothefullJLAsample, the full SNLS3 sample Wang & Wang (2013a). This means that wealsostudythecasesofvariousJLAsubsamples.Sofaraswe the SNLS3 dataset may have some unknown systematic bias, or know,theeffectsofvariousJLAsubsamplesonβ’sevolutionhave anomalies,notaccountedforbythereportedsystematicuncertain- notbeenstudiedinthepast.Moreover,wealsobrieflydiscussthe tiesofSNLS3. impactsoftime-varyingβonparameterestimationarealsostudied. • IftheHSTsubsampleisremovedfromthefullJLAdata,then Ourconclusionsareasfollows: the decreasing rate of β at high redshift will be slightly enlarged (seeFig4). • IfthefullJLAsampleisused,thenαisalwaysconsistentwith • Ifabinnedparameterizationofβisadopted,thenalargerbest- aconstant(seeFig1),andβ hasasignificanttrendofdecreasing, fitvalueofΩ willbeobtained,comparedtothecaseofconstant ∼ 3.5σ CL,athighredshift(seeFig2).Itshouldbepointedout m0 β.However,iftheinformationof1σregionistakenintoaccount, that, due to that the redshift tomography method tends to reduce thenforboththetime-varyingβ andtheconstantβ cases,there- statisticalsignificance,theredshift-dependenceofβ isstudiedthe sultsofΩ areconsistentwiththeresultgivenbytheCMB+BAO hardwayinthiswork.Sincetheeffectofβ’sevolutionisstrong m0 data. enoughtobefoundafteradoptingtheredshifttomographymethod, wecanconcludethattheevolutionofβisindisputable. Inthispaper,weonlyconsiderthesimplestΛCDMmodel.In additiontoΛCDM,manyotherDEmodelsLi (2004);Chevallier& Polarski (2001);Linder (2003)arealsofavoredbycurrentcosmo- 3 Inadditiontoexploringthepossibleevolutionofβ,therearesomeother logicalobservations.Itisofinteresttostudytheeffectsofvarying meaningfultestsforSNsmaples,e.g.seeRefs.Bengochea (2011);Kim βonparameterestimationinotherdarkenergymodelsZlatevetal. (2011);Huetal.(2015a);Wangetal. (2012);Wang (2000) (1999);Caldwell (2002);Li (2004);Wang&Zhang(2008);Wang (cid:13)c 0000RAS,MNRAS000,000–000 MoreEvidencefortheRedshiftDependenceofColorfromtheJLASupernovaSampleUsingRedshiftTomography 5 3.6 3.5 3.4 3.0 3.2 3.0 2.5 β2.8 β 2.0 2.6 Full JLA 2.4 1.5 Full JLA 2.2 2.0 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 z z 4.0 3.5 3.0 β 2.5 Full JLA 2.0 1.5 0.0 0.2 0.4 0.6 0.8 1.0 z Figure2.The1σconfidenceregionsofcolor-luminosityparameterβgivenbyJLAfullsampleatredshiftregion[0,1].Theresultsof3bins,4binsand5bins areshownintheupperleftpanel,theupperrightpanelandthelowerpanel.Thegrayregionandthegraydashedlinedenotethe1σregionandthebest-fit resultgivenbythefullJLAdata.Thered,thegreen,theblue,theyellowandthepurpleregionscorrespondtothe1σregionsofthefirst,thesecond,thethird, thefourthandthefifthbin,respectively. et al. (2008); Li et al. (2009a,b); Huang et al. (2009); Lan et al. ChevallierM.,PolarskiD.,2001,Int.J.Mod.Phys.D,10,213; (2010);Wangetal. (2010,2011);Lietal. (2011);Zhangetal. ConleyA.etal.,2011,Astrophys.J.Suppl.192,1 (2012);Lietal.(2013);Huetal.(2015b);Wangetal. (2016).This ContrerasC.,etal.2010,AJ,139,519 willbedoneinfutureworks. FriemanJ.A.,TurnerS.M.,HutererD.,2008Ann.Rev.Astron. Astrophys.46,385 GiannantonioT.etal.,2015arXiv:1507.05551 ACKNOWLEDGMENTS GuyJ.etal.,2010,A&A,523,7 HamuyM.etal.,1996,AJ,112,2408 Weareverygratefultotherefereeforthevaluablesuggestions.We HemanthaM.D.P.,WangY.,ChuangC.-H.,2014,MNRAS,445, also thank Prof. Yi Wang for carefully reading the manuscript of 3737 thiswork.MLissupportedbytheNationalNaturalScienceFoun- Hicken M., Wood-Vasey W. M., Blondin S., Challis P., Jha S., dation of China (Grant No. 11275247, and Grant No. 11335012) KellyP.L.,RestA.,KirshnerR.P.,2009,ApJ.,700,1097; and985grantatSunYat-SenUniversity.SWissupportedbythe HickenM.etal.,2009,ApJ.,700,331 National Natural Science Foundation of China under Grant No. HillebrandtW.,NiemeyerJ.C.,2000,Ann.Rev.Astron.Astro- 11405024 and the Fundamental Research Funds for the Central phys.38,191 UniversitiesunderGrantNo.16lgpy50. HoltzmanJ.,etal.2008,AJ,136,2306 HuangQ.G.,LiM.,LiX.-D.,&WangS.,2009,Phys.Rev.D, 80,083515 REFERENCES HuangQ.-G.,WangS.,WangK.,2015,JCAP,12,022 AdeP.A.R.etal.,2015,arXiv:1502.01589 HuY.-Z.,LiM.,LiN.,WangS.,2015a,arXiv:1501.06962 AmanullahR.etal.,2010,ApJ,716,712 HuY.-Z.,LiM.,LiN.,WangS.,2015b,arXiv:1506.08274 AstierP.etal.,2006,A&A,447,31 JhaS.etal.,2006,AJ,131,527 BengocheaG.R.,2011,Phys.Lett.B696,5 JohanssonJ.etal.,2013,MNRAS,435,1680 BetouleM.etal.,2014,A&A,568,A22 KesslerR.,etal.,2009,ApJS.,185,32 CaiR.-G.,GuoZ.-K.,TangB.,2014,Phys.Rev.D,89,123518 KimA.,2011,Publ.Astron.Soc.Pac.,123,230 CaldwellR.R.,2002,Phys.Lett.B,545,23 KowalskiM.,etal.,2008,ApJ.,686,749 (cid:13)c 0000RAS,MNRAS000,000–000 6 MiaoLietal. 6.0 4.0 5.5 3.5 low-z (0<z<0.08) 5.0 3.0 4.5 β4.0 β2.5 3.5 2.0 3.0 SDSS (0<z<0.4) 1.5 2.5 2.0 1.0 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 z z 4.0 3.5 3.0 β 2.5 SNLS (0.1<z<1.1) 2.0 1.5 0.2 0.4 0.6 0.8 1.0 z Figure3.The1σconfidenceregionsofβgivenbythethreesubsamples:low-z(upperleftpanel),SDSS(upperrightpanel)andSNLS(lowerpanel).The grayregionandthegraydashedlinearethe1σregionandthebest-fitresultgivenbythefulllow-z,thefullSDSSandthefullSNLSsubsample,respectively. Thered,thegreen,theblueandtheyellowregionscorrespondtothe1σregionsofthefirst,thesecond,thethirdandthefourthbin,respectively. 3.5 3.5 3.0 3.0 2.5 2.5 β β 2.0 2.0 JLA without HST Full JLA 1.5 1.5 1.0 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 z z Figure4.The1σconfidenceregionsofβgivenbythe“JLAwithoutHST”data(leftpanel)andthefullJLAsample(rightpanel)atredshiftregion[0,1].The grayregionsandthegraydashedlinesdenotethe1σregionsandthebest-fitresultsgivenbythefullsamples,respectively.Thered,thegreen,theblueandthe yellowregionscorrespondtothe1σregionsofthefirst,thesecond,thethird,andthefourthbin,respectively. Lan M.-X., Li M., Li X.-D., Wang S., 2010, Phys. Rev. D 82, LiM.,LiX.-D.,WangS.,WangY.,2011,Commun.Theor.Phys. 023516 56,525 LewisA.,BridleS.,2002,Phys.Rev.D,66,103511 LiM.,LiX.-D.,WangS.,WangY.,2013,FrontiersofPhysics8, LiM.,2004,Phys.Lett.B,6031 828 LiM.,LiX.-D.,WangS.,ZhangX.,2009a,JCAP,06,036 LiY.-H.,WangS.,LiX.-D.,ZhangX.,2013,JCAP02,033 LiM.,LiX.-D.,WangS.,WangY.,ZhangX.,2009b,JCAP,12, LiX.-D.,LiS.,WangS.,ZhangW.-S.,HuangQ.-G.,LiM.,2011, 014 JCAP1107,011 (cid:13)c 0000RAS,MNRAS000,000–000 MoreEvidencefortheRedshiftDependenceofColorfromtheJLASupernovaSampleUsingRedshiftTomography 7 ΛCDM model CMB+GC JLA const β JLA varying β 0.0 0.1 0.2 0.3 0.4 Ω m0 Figure5.The1DmarginalizedprobabilitydistributionsofΩm0givenby thefullJLAsamplefortheΛCDMmodel.Boththeresultsofconstantβ (greendash-dottedline)andvaryingβ(redsolidline)casesarepresented. ThecorrespondingresultsgivenbytheCMB+BAOdata(blackdashedline) arealsoshownforcomparison. LinderE.V.,2003,Phys.Rev.Lett.90,091301. MarrinerJ.etal.,2011,ApJ.740,72 MohlabengG.,RalstonJ.,2013,MNRAS,439,L16 PerlmutterS.etal.,1999,ApJ,517,565 RiessA.G.etal.,1998,AJ,116,1009 RiessA.G.etal.,1999,AJ,117,707 RiessA.G.etal.,2007,ApJ.659,98 SchlaflyE.F.,FinkbeinerD.P.,2011,ApJ.737,103 ShariffH.,JiaoX.,TrottaR.,DykD.A.v.,arXiv:1510.05954 SuzukiN.etal.,2012,ApJ,746,85 WangS.,GengJ.-J.,HuY.-L.,ZhangX.,2015,Sci.ChinaPhys. Mech.Astron.58,019801 WangS.,HuY.,LiM.,LiN.,2016,ApJ821,60 WangS.,LiX.-D.,LiM.,2010,Phys.Rev.D,82,103006 WangS.,LiX.-D.,LiM.,2011,Phys.Rev.D,83,023010 WangS.,LiY.-H.,ZhangX.,2014,Phys.Rev.D,89,063524 WangS.,WangY.,2013a,Phys.Rev.D,88,043511 WangS.,WangY.-Z.,GengJ.-J.,ZhangX.,2014,Eur.Phys.J.C 74,3148 WangS.,WangY.-Z.,ZhangX.,2014,Commun.Theor.Phys.62, 927 Wang,S.&Zhang,Y.2008,Phys.Lett.B,669,201 WangS.,ZhangY.,XiaT.-Y.,2008,JCAP,10,037 WangY.,2000,ApJ,536,531. WangY.,DarkEnergy,Wiley-VCH,2010,NewYork,(2010) WangY.,2014,MNRAS,443,2950 Wang Y., Chuang C. H., Mukherjee P., 2012, Phys. Rev. D, 85, 023517 WangY.,DaiM.arXiv:1509.02198 WangY.&WangS.,2013b,Phys.Rev.D88,043522 Weinberg D. H., Mortonson M. J., Eisenstein D.J. et al. 2013, PhysicsReports,530,87 ZhangZ.H.,LiM.,LiX.-D.,WangS.,ZhangW.-S.,2012,Mod. Phys.Lett.A,27,1250115 ZlatevI.,WangL.SteinhardtP.J.1999,Phys.Rev.Lett.,82,896 (cid:13)c 0000RAS,MNRAS000,000–000

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.