ebook img

Mordell–Weil Lattices (Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics) PDF

436 Pages·2019·2.769 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mordell–Weil Lattices (Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics)

Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 70 Matthias Schütt Tetsuji Shioda Mordell–Weil Lattices Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics Volume 70 Series Editors L. Ambrosio, Pisa V. Baladi, Paris G.-M. Greuel, Kaiserslautern M. Gromov, Bures-sur-Yvette G. Huisken, Tübingen J. Jost, Leipzig J. Kollár, Princeton G. Laumon, Orsay U. Tillmann, Oxford J. Tits, Paris D.B. Zagier, Bonn More information about this series at http://www.springer.com/series/728 ü Matthias Sch tt Tetsuji Shioda (cid:129) – Mordell Weil Lattices 123 Matthias Schütt Tetsuji Shioda Institut für Algebraische Geometrie Department ofMathematics LeibnizUniversität Hannover RikkyoUniversity Hannover, Niedersachsen,Germany Tokyo,Japan ISSN 0071-1136 ISSN 2197-5655 (electronic) ErgebnissederMathematikundihrerGrenzgebiete.3.Folge/ASeriesofModernSurveys in Mathematics ISBN978-981-32-9300-7 ISBN978-981-32-9301-4 (eBook) https://doi.org/10.1007/978-981-32-9301-4 MathematicsSubjectClassification(2010): 14J27,14J20,14J26,14J28,11G05,11G07,11G25,11R09, 11G50,11H31,06B15 ©SpringerNatureSingaporePteLtd.2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsorthe editorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Dedicated to Yukiko Preface In this book, we will study the Mordell–Weil lattice of an elliptic curve over a function field and discuss various applications. Theideaforthebookaroseintheearly1990s.Yetittookmorethan20yearsto finishit.Atleast,thisdelaycamewiththeincidentaladvantagethatwewereableto cover several recent developments building on Mordell–Weil lattices. Let us highlight here only the notion of (multiplicative) excellent families and the impact of Mordell–Weil lattices on the theory of K3 surfaces in recent years. Once again, these applications display the powerful interactions which Mordell–Weil lattices fosterinaseeminglyelementarywaybetweenfoundationaltopicssuchasalgebraic equations, elliptic curves and lattices. One characteristic of the Mordell–Weil lattice is the fact it is equipped with a clear-cut height pairing, based on the intersection theory of the associated elliptic surface.Asaconsequence,wearenaturallyledtosomebeautifullatticessuchasE 8 (the positive-definite unique even unimodular lattice of rank eight) among the Mordell–Weil lattices. When writing the present book, we had a fairly broad readership in mind, from novicetoadvancedresearchersrangingthroughdifferentfieldssuchasclassicaland algebraic geometry and number theory, reflecting the diverse input into the theory of Mordell–Weil lattices.To keep themanuscript as self-contained as possible, we decided to include concise reviews of all the background material needed (notably lattices, elliptic curves, and algebraic surfaces). Necessarily, this means that some readers will be familiar with parts of the early chapters, and that the level of the material presented rises steadily as the book advances. Numerous examples are to befoundthroughoutthebook,somebuildingexplicitlyoneachothersothereader canseetheideasofthesubjectsunderconsiderationunfoldoneaftertheotheruntil the full impact and connections of Mordell–Weil lattices have been revealed. Hannover, Germany Matthias Schütt Tokyo, Japan Tetsuji Shioda June 2019 vii Acknowledgements This book, and some of the developments described in it, would have been impossible without Jean-Pierre Serre and Friedrich Hirzebruch, whose advice and encouragementwereinvaluabletous.Wearenolessindebtedtoourcolleaguesand co-authorsthroughouttheyears,ofwhomweshouldliketomentionNoboruAoki, Bert van Geemen, Torsten Ekedahl, Noam D. Elkies, Klaus Hulek, Toshiyuki Katsura,RemkeKloosterman,ShigeyukiKondo,MasatoKuwata,AbhinavKumar, Keiji Oguiso, Ichiro Shimada, Tomohide Terasoma, Jaap Top, and Hisashi Usui. SpecialthanksgotoSimonBrandhorstformanyvaluablecommentswhichhelped us improve the manuscript. We are indebted to the referees for their numerous suggestions which helped streamline the exposition and for providing many additions and corrections. Our thanks go to everyone at Springer who helped to make this book possible, espe- cially to Reinhold Remmert. Wethanktheinstitutionswhichhavesupported,oreveninfluenced,thegenesis ofthis book inthelast 25years, notablyRikkyoUniversity, MPIM Bonn,Leibniz Universität Hannover, University of Tokyo, University of Copenhagen, and RIMS Kyoto. Funding from various sources is gratefully acknowledged. Among others we received generous support from JSPS under Grant-in-Aid for Scientific Research No. 17540044, (C) 20540051, (C) 25400052, from ERC under StG 279723 (SURFARI), and from DFG in the framework of RTG 1463. Most importantly, we would like to thank our families for their patience and support throughout all these years. Hannover, Germany Matthias Schütt Tokyo, Japan Tetsuji Shioda June 2019 ix Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 Generalities on Lattices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Sphere Packings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Root Lattices and Their Dual Lattices . . . . . . . . . . . . . . . . . . . 19 2.3.1 Auxiliary Lattice Lr;s . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.2 Ar and A_r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.3 Dr and D_r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.4 Er and Er_ ðr ¼6;7;8Þ. . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.5 Discriminant Groups. . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.6 Invariant Theory of the Weyl Groups, I. . . . . . . . . . . . 33 2.3.7 Invariant Theory of the Weyl Groups, II . . . . . . . . . . . 35 3 Elliptic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1 Elliptic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 The Group Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3 Mordell–Weil Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.4 Degenerate Plane Cubics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4.1 Case (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.4.2 Case (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.4.3 Further Degenerations. . . . . . . . . . . . . . . . . . . . . . . . . 51 3.4.4 The First Elliptic Surface . . . . . . . . . . . . . . . . . . . . . . 53 3.4.5 An Elliptic Surface with Constant Moduli . . . . . . . . . . 53 4 Algebraic Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.1 Divisors and Picard Group . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2 Néron–Severi Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3 Intersection Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.4 Hodge Index Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 xi xii Contents 4.5 Blow-Ups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.6 Minimal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.7 Invariants of Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.7.1 Relation with Picard Number . . . . . . . . . . . . . . . . . . . 71 4.8 Enriques–Kodaira Classification. . . . . . . . . . . . . . . . . . . . . . . . 72 4.9 Castelnuovo’s Criterion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.10 Non-smooth Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5 Elliptic Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.1 Definition of an Elliptic Surface. . . . . . . . . . . . . . . . . . . . . . . . 79 5.2 Sections Versus Rational Points. . . . . . . . . . . . . . . . . . . . . . . . 81 5.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.4 Singular Fibres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.5 Connection with Dynkin Diagrams . . . . . . . . . . . . . . . . . . . . . 90 5.6 The Kodaira–Néron Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.6.1 Group Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.7 The Weierstrass Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.8 Tate’s Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.8.1 Multiplicative Reduction. . . . . . . . . . . . . . . . . . . . . . . 98 5.8.2 Additive Reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.9 Singular Fibres Versus Discriminant and j-Invariant . . . . . . . . . 101 5.9.1 Quadratic Twists . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.9.2 Base Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.9.3 Dokchitsers’ Refinement. . . . . . . . . . . . . . . . . . . . . . . 106 5.10 Minimal Weierstrass Models . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.11 Canonical Divisor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.12 Euler Characteristic and Euler Number. . . . . . . . . . . . . . . . . . . 111 5.13 Differential Forms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6 Mordell–Weil Lattices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.1 The Trivial Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.2 The Néron–Severi Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.3 Horizontal and Vertical Divisors . . . . . . . . . . . . . . . . . . . . . . . 118 6.4 Essential Lattice and Frame. . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.5 Mordell–Weil Lattices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.6 Torsion Sections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 6.6.1 Determinant Formula . . . . . . . . . . . . . . . . . . . . . . . . . 131 6.6.2 Frame Versus Singular Fibres . . . . . . . . . . . . . . . . . . . 133 6.7 Narrow Mordell–Weil Lattice . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.8 The Case of a Unimodular Néron–Severi Lattice . . . . . . . . . . . 137 6.9 Functorial Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Contents xiii 7 Rational Elliptic Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.1 Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.2 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 7.3 The Case of High Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 7.4 Weierstrass Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 7.5 Cubic Pencils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 7.6 General Cubic Pencil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 8 Rational Elliptic Surfaces and E8-Hierarchy. . . . . . . . . . . . . . . . . . 161 8.1 Singular Fibres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 8.2 Structure of Mordell–Weil Lattice . . . . . . . . . . . . . . . . . . . . . . 163 8.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 8.4 Torsion Sections on Rational Elliptic Surfaces . . . . . . . . . . . . . 169 8.5 Proof of Classification Theorem 8.8. . . . . . . . . . . . . . . . . . . . . 170 8.5.1 r(cid:2)4 (Nos. 1–14). . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 8.5.2 r ¼3 (Nos. 15–24) . . . . . . . . . . . . . . . . . . . . . . . . . . 173 8.5.3 r ¼2 (Nos. 25–42) . . . . . . . . . . . . . . . . . . . . . . . . . . 174 8.5.4 r ¼1 (Nos. 43–61) . . . . . . . . . . . . . . . . . . . . . . . . . . 175 8.5.5 r ¼0 (Nos. 62–74) . . . . . . . . . . . . . . . . . . . . . . . . . . 176 8.6 Corollaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 8.7 Integral Sections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 8.8 Extremal Rational Elliptic Surfaces . . . . . . . . . . . . . . . . . . . . . 180 8.9 Existence of Types of Rational Elliptic Surfaces. . . . . . . . . . . . 181 8.10 Maximal Singular Fibres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 8.10.1 T ¼A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 8 8.10.2 T ¼D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 8 8.10.3 T ¼E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 8 8.10.4 Comment on K3 Surfaces and Beyond . . . . . . . . . . . . 187 8.10.5 Connection with Polynomial Sections . . . . . . . . . . . . . 187 9 Galois Representations and Algebraic Equations . . . . . . . . . . . . . . 191 9.1 Galois Representations Arising From Mordell–Weil Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 9.2 Algebraic Equations Arising From Mordell–Weil Lattices. . . . . 194 9.3 The Specialization Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 9.4 Galois Representation and Algebraic Equation of Type E ;E or E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 6 7 8 9.4.1 Galois Representations on Hexagonal Elliptic Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 9.4.2 Set-Up for the Additive Type Er ðr ¼6;7;8Þ . . . . . . . 202 9.4.3 Generic Galois Representation and Algebraic Equation of Additive Type Er ðr ¼6;7;8Þ . . . . . . . . . 205 9.5 Application to Number Theory . . . . . . . . . . . . . . . . . . . . . . . . 211 9.5.1 Exceptional Type Erðr ¼6;7;8Þ Versus Classical Type An(cid:3)1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.