ebook img

Monte Carlo simulations of a coarse grained model for an athermal all-polystyrene nanocomposite system PDF

0.44 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Monte Carlo simulations of a coarse grained model for an athermal all-polystyrene nanocomposite system

MonteCarlosimulationsofa coarsegrainedmodelfor an athermalall-polystyrene nanocompositesystem GeorgiosG.Vogiatzis,EvangelosVoyiatzis,andDorosN.Theodorou∗ SchoolofChemicalEngineering,NationalTechnicalUniversityofAthens,ZografouCampus,GR-15780Athens,Greece ReceivedJanuary16,2014;E-mail:[email protected] richedwithdispersedparticlesmayhavebetterpropertiesthanthe 4 Abstract: The structure of a polystyrene matrix filled with tightly net polymeric material and can be used in more demanding and 1 cross-linked polystyrene nanoparticles, forming an athermal novel applications. Therefore, an understanding and quantitative 0 nanocompositesystem,isinvestigatedbymeansofaMonteCarlo descriptionofthephysicochemicalpropertiesofthesematerialsis 2 sampling formalism. The polymer chains are represented as ran- ofmajorimportancefortheirsuccessfulproduction. n dom walksand the systemisdescribed through a coarsegrained Thephysicalandchemicalbehaviorofthiskindofmaterialsde- a Hamiltonian. Thisapproachisrelatedtoself-consistent-fieldtheory pendsonthenatureofthenanodispersedphase.Thecharacteristics J but does not invoke a saddle point approximation and is suitable of the surface of the particles significantly affect the behavior of 4 fortreatinglargethree-dimensionalsystems. Thelocalstructureof thecompositepolymeric/particlesystem. Insomecases,thedis- 1 thepolymermatrixinthevicinityofthenanoparticlesisfoundtobe persednanoparticles inthepolymericmatrixmayaggregate. The differentinmanywaysfromthatofthecorrespondingbulk,bothat presenceofparticleswithgraftedchainsimproveswettingeffects ] t thesegmentandthechainlevel. Thelocalpolymerdensityprofile inthe system and suppresses aggregation, leading the material to f o near to the particle displays a maximum and the bonds develop dramaticallydifferentperformance. s considerable orientation parallel to the nanoparticle surface. The Extensive experimental work on all-polystyrene nanocompos- t. depletion layer thicknessis also analyzed. The chains orient with iteshasbeenrecentlypresented.8–10Regardingtheconformational a theirlongestdimensionparalleltothesurfaceoftheparticles.Their properties, thedimensions ofmatrixchains, measuredbyneutron m intrinsic shape, as characterized by spans and principal moments scattering techniques, indicate swelling induced by the dispersed - ofinertia,isfoundtobeastrongfunctionofpositionrelativetothe tightlycross-linkednanoparticles.Thiseffectoccursonlywhenthe d interface. The dispersion of many nanoparticles in the polymeric radiusofgyrationofthechainislargerthanthenanoparticleradius. n matrixleadstoextensionofthechainswhentheirsizeissimilarto Theall-polymercompositesystemappearstobeastableblendeven o theradiusofthedispersedparticles. forsmallinterparticledistances,suggestingthatchainshapeinthe c [ polymermatrixishighlydistorted. Asforthedynamicproperties, the blend viscosity was found to demonstrate a non-Einstein-like 1 decreasewithnanoparticlevolumefraction. Itwassuggestedthat v Introduction thisphenomenonscaleswiththechangeinfreevolumeintroduced 4 by the nanoparticles, while the entanglements seem to be totally 6 Nanocomposite polymeric materials consist of nanoparticles dis- unaffected. 3 3 persedinapolymericmatrix. Thisnewfamilyofcompositemate- Theeffectofincorporatingasphericalnanoparticleonthecon- . rialsdisplaysavarietyofpropertiesthatattractgreatscientificand formational properties of a polymer has been demonstrated by 1 industrialinterest. Thepracticeofaddingnanoscalefillerparticles meansofMonteCarlo(MC)simulationsfordiluteandsemi-dilute 0 to reinforce polymeric materials can be traced back to the early solutions.11,12Thesestudieshavebeenquitegeneric,employinga 4 yearsofthecompositeindustry. Thedesignofsuchconventional bead-springandhard-sphererepresentationforthepolymerandthe 1 : composites has focused on maximizing the interaction between nanoparticle, respectively. Themost significant changes instruc- v thepolymermatrixandthefiller.1 Thisiscommonlyachievedby turalpropertiesandorientationoccurredwithinthedepletionlayer. Xi shrinking the filler particles in order to increase the surface area Theeffective interactions between twodispersed nanoparticles in available for interaction withthe matrix. Withthe appearance of a polymer solution have been quantified by calculating the po- r a syntheticmethodsthatcanproducenanometersizedfillers,result- tential of mean force through the expanded ensemble density of ing inan enormous increase of surface area, polymers reinforced states technique.12 An oscillating long-range behaviour has been with nanoscale particles should show vastly improved properties. revealed. Nanomaterials fabricated by dispersing nanoparticles in polymer Efforts have also been made to predict the aggregation or the meltshavethepotentialforperformancesexceedingthoseoftradi- dispersionofpolymernanoparticlesinpolymermatrixbythermo- tionalcompositesbyfar.2 dynamicmodelling.Recentadvancesarethoroughlyreviewedin13 Even though some property improvements have been achieved andincludecompressibleregularsolutionfreeenergymodels,14,15 in nanocomposites, nanoparticle dispersion is difficult to control, based on modification of theories for binary polymer blends, and withboththermodynamicandkineticprocessesplayingsignificant generalizations of integral equation theories,16,17 such as the mi- roles. It hasbeen demonstrated that dispersed spherical nanopar- croscopicPolymerReferenceInteractionSiteModel(PRISM).The ticles can yield a range of multifunctional behaviour, including proposed models extend existing theories by incorporating spe- a viscosity decrease, reduction of thermal degradation, increased cificnanoparticle-nanoparticleandnanoparticle-polymercontribu- mechanical damping, enriched electrical and/or magnetic perfor- tions. The predicted phase diagrams indicate that such systems mance,andcontrolofthermomechanicalproperties.3–7Thetailor- exhibitarichvarietyof behaviours, includingupper criticalsolu- madepropertiesofthesesystemsareveryimportanttothemanu- tiontemperature-type,lowercriticalsolutiontemperature-type,and facturing procedure, as they fully overcome many of the existing hour-glassshape. operationallimitations. Asafinalproduct,apolymericmatrixen- Amajorchallengeinsimulatingrealisticnanocompositemateri- 1 alsisthatboththelengthandthetimescalescannotbeadequately andnanoparticle-nanoparticle.Thesystemiscontainedinvolume treatedbymeansofatomisticsimulationsbecauseoftheextensive V at temperature T. The matrix consists of n polymeric chains computational load. This is why a variety of mesoscopic tech- whichareconsideredtoobeythefreelyjointedchainmodel. Each niques havebeendeveloped for theseparticular systems. Among chainconsistsofN Kuhnsegments. Thebondlengthiskeptfixed them, Self-Consistent Field Theory (SCFT) seems to be a well- andisequal totheKuhn length, b, of thespecificpolymer under foundedsimulationtool.18Thismethodadoptsafield-theoreticde- consideration. Thenp nanoparticlesarerepresentedasimpenetra- scriptionofthepolymericfluidsandmakesasaddle-point(mean- blespheres. TheinteractionenergyH includesonlynon-bonded field) approximation. Significant progress has been made in ap- contributions: plyingtheSCFTtonanoparticle-filledpolymermatricesinthedi- luteandsemi-diluteregion.19–21 Alattice-basedsimulationinthe H (~r)=Hpp{r (~r)}+Hpn+Hnn (1) contextoftheScheutjens-Fleerapproximationhascastsomelight where Hpp stands for the non-bonded interactions between the ontotheequilibriumdispersionofnanoparticleswithgraftedpoly- polymericchains,Hpn forthebinteractionbetweenpolymericseg- merchainsintodensepolymermatrices,wherethematrixandthe ments and nanoparticles and Hnn for the interaction between brushes sharethesamechemical structure.22 Anattempt toover- nanoparticles. cometherestrictionsposedbythesaddle-pointapproximationwas Animportantdifferenceinthetreatmentofpolymer-polymerin- madein.23 Thecoordinatesofallparticlesinthesystemwereex- teractionscomparedtothosearisingbecauseofthepresenceofthe plicitlyretainedasdegreesoffreedom. Itwascrucialtoupdatesi- nanoparticleisthattheformeraretakenintoaccountthroughasuit- multaneouslythecoordinatesandthechemicalpotentialfieldvari- ablefunctional of the instantaneous local density r (~r), while the ables. latterareaccountedforbyapairwiseinteractionpotential. Thelo- Inthesamespiritofrelaxingthemeanfieldapproximation,Bal- cal density is computed directly from the segmentbpositions by a azsandcoworkershaveproposedacouplingofSCFTfortheinho- smoothingprocedure. Thenon-bondedinteractionsHpparegiven mogeneous polymers anddensityfunctional theory(DFT)forthe by: nanoparticles.24–26 The extrema of the approximate energy func- b Hpp{r (~r)}= r 0 d3~r k 0N[r (~r)−1]2 (2) tionalcreatedinthiswaycorrespondtothemean-fieldsolution.Al- N V 2 Z (cid:18) (cid:19) hthionudgerhedthbeyStCheFdTi-fDfiFcuTltaypipnreoxatcehndisinqgutiotespyrsotemmissifnogr,withiischcurerrleianbtllye awvheerraegeb b=ulkkB1nTuwmibbtherkdBebnesiintygothfesBegomlteznmtsa.nnDbceovniasttiaonntsanodftrh0eilsotchael densityfunctionalsarenotavailable. densityfromtheaveragebulkvaluearerestrictedbythequadratic A novel way of incorporating fluctuation effects in self- termwhichstemsfromHelfand’sapproximation.32 Thus,themelt consistent mean-field theories has been recently proposed.27,28 hasafinitecompressibility,whichisinverselyproportionaltok : 0 The“SingleChaininMeanField”simulationtechniqueisparticle- 1 btuaasteidnga,nedxtfeorunnadlefidelodns.anThenesfiemelbdlsemoifminicdethpeenedfefencttcohfaitnhseiinnsfltaunc-- k 0= kBTk Tr 0 . (3) taneous interactions of a molecule with its neighborhood. They Althoughthecoordinatesoftheparticles,eitherpolymericseg- arefrequentlyupdated usingthespatiallyinhomogeneous density ments or nanoparticles, arethe degrees of freedom in our model, distribution of the ensemble. The explicit conformations of the thelocaldensitiesthatappearin(??)arenotdefinedbythemicro- molecules evolve by Monte Carlo. Thistechnique has been very scopic expression r (~r)=(cid:229) nj=1(cid:229) Ni=0d ~r−~rj,i . Rather, they are succesfullindescribingtheself-assemblyandtheorderingofblock obtainedbyaparticle-to-mesh(PM)assignmenttechnique. Auni- (cid:0) (cid:1) copolymersonpatternedsubstratesencounteredinprocessessuch form,rectangulargbridwithnsitessitesisintroduced.Thelocalden- asnanolithography.22,29–31 sitiesaredefinedoneachsitebyapplyingasmoothingprocedure Thepresentworkexaminesthestructureofapolymermatrixin tothebead’s position. Asaconsequence, adiscretizationparam- thevicinityofpolymericnanoparticles.Particularattentionisgiven eter D L has to be introduced; it is the grid spacing. Phenomena tocapturingtheorientationaleffectsandthechainconformationof anddetailsofthesystemwhoselengthscalesaresmallerthanthe thematrixinadense,polymericnano-filledcomposite. Theanaly- D Lparametercannotbedescribedaccurately. Thus,thisparameter sis is based on a coarse grained Monte Carlo simulation method setstheresolutionlevelofourobservations. Italsodefinesasort which can be readily applied to the complex three-dimensional ofmicroscopiccutoff, sinceitdeterminestherangeofinteraction nanocomposite system. Although thelevel ofdescription isquite between neighboring beads. It follows that D L must not be less abstract (i.e. that of the freely-jointed chain for the matrix), the thantheaveragedistancebetweentwobeads. Thevalueatwhich developed model triestopredict thebehaviour of a nanocompos- D Lshouldbesetdependsstronglyonthesystemofinterestandthe itewithspecificchemistry, namelyofanall-polystyrenematerial. preferredsmoothingprocedure. A main characteristic of the method isthat it treatsin a different Theassignmentprocedureofapolymericbeadtothesitesofthe mannertheinteractionbetweenpolymerandbetweenpolymerand rectangulargridisshowninFigure1. Thei-thsegmentofthe j-th particle: theformerisaccountedforthroughasuitablefunctional chainatposition~rj,i shownasablackdot,yieldsacontributionto of the local densities, while the latter is described directly by an aneighboringm-thsite,shownaswhitedot,P ~rj,i,~cm ,where~cm explicitinteractionpotential. isthepositionof thecentreofthemthsiteandP theassignment (cid:2) (cid:3) function.Theresultingnormalizeddensityatsitemiscalculatedas thesumofthecontributionsofallsegmentsinthesystem, giving Method theinstantaneousnumberofsegmentsassignedtothesite: PolymerCoarseGrainedModel r m= r n1or (cid:229)n (cid:229)N P ~rj,i,~cm 1−21 d j,0+d j,N (4) m j=1(i=0 )(cid:20) (cid:21) The aim of the developed coarse grained model is to describe (cid:2) (cid:3) (cid:0) (cid:1) thepropertiesofthenanocompositematerialatmesoscopiclength withbd theKroneckerdelta. scales. Themainparametersarethechain connectivity, thefinite The normalization constant r mnor represents the segment num- compressibilityofthemeltandexplicitpairwisepotentialsforthe berdensitythatthesitemwouldhave,providedthatthemeltwas vanderWaalsinteractionsbetweenpolymersegment-nanoparticle completely homogeneous without anydensity fluctuation, r mnor = 2 Nanoparticle-polymerandnanoparticle-nanoparticle interaction Theeffect of dispersing bare nanoparticles inthepolymer matrix isexplicitlyaccounted. Pairwisepotentialsdescribingtheeffective eff interaction between polymeric segment - nanoparticle, Upn , and nanoparticle - nanoparticle,Ueff areintroduced. The overall ex- nn plicitenergeticeffect istakenintoaccount intheHamiltonianby summing uptheseinteractionsfor all possiblepairsof nanoparti- clesandpolymericsegments: Hpn= (cid:229)np (cid:229)nN Unepff ~rin−~rip (6) in=1ip=1 (cid:0) (cid:1) and Hnn=n(cid:229)p−1 (cid:229)np Unenff ~rin−~rjn . (7) in=1 jn=in+1 (cid:0) (cid:1) ThereferenceenergyleveloftheemployedHamiltonian(??)for thehomopolymermeltisthatofameltwithuniformdensityprofile. Figure1. SchematicofthePMtechniqueusedtoestimatethelocaldensi- ties. Inthiscase,theeffectiveinteractionenergybetweentwopolymeric beadsistakenaszero. Theeffectivepotentialsintroducedin(??) and (??) should be such that, if the volume of the nanoparticles nN/nsites. TheassignmentfunctionP couldbechosenarbitrarily. was occupied by bulk homopolymer, then the energy of the sys- In the present study, a zero-order (PM0) interpolation scheme is temwouldbezero. Theinsertionofananoparticleinauniformly- employed. Thischoicecorresponds tothecasewherethebeadis distributed melt can be thermodynamically accomplished in two assigned entirelytoitsclosest siteanddoes not contributetoany steps: a spherical volume of polymer, whose net interaction with othersite.Itfollowsthattwobeadsinteractonlywhentheyareas- the rest of the polymer matrix isUpeqpuiv−p, is removed from the signedtothesamesite.Itisofgreatimportancetouseadensegrid melt and a nanoparticle with equal volume is placed in its posi- withmanysites,soastominimizethediscretizationeffectonthe tion,introducinganewnetinteractionUpnwiththeremainingbulk density. polymer (Figure 2 from step A to step B). Thus, the net interac- Apart from the polymer-nanoparticle pairwise potential, the tionsbetweenpolymer-polymershouldbesubtractedfromthenet mereexistenceofthenanoparticle,whichisanimpenetrablespher- interactionsbetweenpolymer-nanoparticle:35 ical object, defines a second, implicit way of interaction withthe Upenff =Upn−Upeqpuiv−n . (8) matrix.Theavailablevolumethatthepolymercanoccupyincells, thatareinthevicinityofthenanoparticle, islessthanthevolume Thetreatmentoftheeffectiveinteractionsbetweentwonanopar- whichcanbeoccupiedincellsfarawayfromit. Sincethevolume ticlesismoresophisticated. Theirinsertioninthemelt,following ofthecellstouchingthenanoparticleistruncated,thenormalizing theabovethermodynamicway,requirestwomoreadditionalsteps densityr nor ofanarbitrarycellshouldbegivenby: with respect to the previous case. A second spherical volume of m polymerisremovedfromthemeltinthepresenceofonenanopar- r mnor=r 0 d~rP ~rj,i,~cm (5) ticle,whosenetinteractionwiththerestofthesystemisUpenquiv−n, ZVmacc andthesecondparticleisinsertedinthecreatedvolume,introduc- whereVmacc isthevolumeofthecellsp(cid:2)aceacc(cid:3)essibletothepoly- ing new net interactionUnn with the composite system (Figure 2 mericsegments. ForthecaseofthePM0scheme, r mnor issimply fromstepBtostepC). proportionaltotheaccessible(nonnanoparticle-occupied) volume associatedwithsitem, r mnor =r 0Vmacc. Thecalculationof theac- Unenff =Unn−2Upenquiv−n+Upeqpuiv−n (9) cessiblefreevolumeofeachcellofthegridisbasedonasuitable Thecoarsegrainedpotentialsdescribingthenetinteractionsin- adaptationofananalyticalalgorithm.33Theoriginalalgorithmde- volvedin(??)and(??)arederivedonthegroundsofHamakerthe- terminesinananalyticalfashionthevolumeofaspheredelimited ory.36Amajoradvantageisthattheexistenceofaccurateatomistic by a set of arbitrary directed planes. It has been adapted to treat potentials describing these interactions is exploited. The need to the case of the volume of a sphere intersecting with a cubic box introduceempiricallyadjustableparametersiskepttoaminimum. andtakesintoaccounttheperiodicboundaryconditions.Thesame Theintegratedpotentialsarecomputationallyeffective. Eachpar- strategycanbeappliedtothecaseofmultipleparticlesintersecting ticle is treated as a collection of atoms which interact only with onebox,sincetheformercannotintersecteachotherandtheavail- atomsofdifferentparticles: able volume can be readily estimated by subtracting the volume occupiedbyeachparticle. U(r12)= r 1(~r1)r 2(~r2)ULJ(r12)dV1dV2 (10) Analternativetousingagridinordertoestimatethelocaldensi- Zsphere1Zsphere2 tiesistoresorttocloud-densitymethods.34Suchtechniquescallfor wherer 1andr 2standforthedensityofinteractioncentresineach aprocessthatidentifiesthepairofbeadswhicharecloseenoughto particles, r12 is the distance between the centres of the particles, interact.AdiscretizationparametercloselyrelatedtoD Lemployed anddV1,dV2theelementaryvolumesofeachparticle.Thediscrete inthePMcase,theGaussianwidth,hastobedefined.Thereisalso distributionoftheinteractingatomsineachparticleisassumedto asignificantincreaseofcomputationalload. Despitethedemand- be continuous and uniform. The shape of the particles is spheri- ingnatureofthecloudmethods, theaccuracyoftheirpredictions cal. Ananalyticalclosed-formsolutioncanberigorouslyderived, hasbeenshowntobethesameasthatof grid-mediatedonesand bothmethodsgiveessentiallythesameresults.29,34 3 sponding to a Kuhn segment and the experimental mass density (approximately Rb=6.7 Å). The closest distance of approach is equalorgreaterthantheradiusthatisusedfortheestimationofthe Hamaker interaction between the nanoparticle and the Kuhn seg- ment. TheatomisticparametersforCH(aromatic),CH (aliphatic), 2 CH(aliphatic),andCH (aliphatic)sitesinteractingwitheachother 3 aretakenfrom.38Thecross-interactionparametersareestimatedby ageometricmeancombiningrule.39Bothnanoparticle-polymeric segment and nanoparticle - nanoparticle potential are depicted in Figure3. 3 20 0 2 −20 −40 U / k TB 1 −60 Nanoparticle − nanoparticle −80 0 5 10 15 20 25 30 35 40 0 Polymeric Segment − Nanoparticle −1 0 5 10 15 20 25 30 35 40 Surface to surface distance of interacting particles [Å] Figure3. Pairwiseinteractionpotentialsusedforpolymericsegmentand Figure2. Insertion oftwo nanoparticles inthe matrix, inthree discrete nanoparticles with the energy axis scaled by kBT. The density of the steps. InstepAasphericalvolumeofpolymericmatrixisremovedfrom nanoparticleis1.15cmg3 anditsradiusisRn=36Å.Theradiusofthepoly- themelt. InstepBthefirstsphericalparticleisplacedintheplaceofthe mericsegmentinteractionsiteRbis6.7Å.Thecentre-to-centredistanceis removedvolumeofpolymericmatrix. FinallyinstepCanothervolumeof shiftedbyRn+Rbinthecaseofthepolymericsegment-nanoparticleinter- polymericmatrixisreplacedbythesecondnanoparticle. action(mainfigure)andby2Rn inthecaseofnanoparticle -nanoparticle interaction(inset). providedthattheatomisticpotentialisLennard-Jones12-6:36,37 DetailsoftheMonteCarloSimulations U(r12) = UA(r12)+UR(r12) (11) A 2a a 2a a Allsimulationswerecarriedoutinthecanonicalstatisticalensem- UA(r12) = − 612"r122−(a11+2 a 2)2+r122−(a11−2a 2)2 bculebi(cNaVnTd).itTsheedtgeemlpeenrgatthurweaosf6th0e0syÅs.teImtswhoausl4d0b0eKn.oTtehdetbhoaxt,wfoasr + ln rr112222−−((aa 11+−aa 22))22!# (12) athllecrhaadiinusleonfggthysra,ttihoeneodfgaeclehnaginth,siosagsretaotearvothidanfi4nRitegswiziteheRffgecbtesi.n1g1 Thesystemsstudiedwerestrictlymonodisperse, whilethedegree A s 6 UR(r12) = 12 LJ ofpolymerizationofthechainsNwasvaried,withN=32,64,128 37800r12 and256beads(Figure4.Thecorrespondingmolecularweightsare r122−7r12(a 1+a 2)+6 a 12+7a 1a 2+a 22 23, 47, 93 and 187 kg/mol, respectively). The number of chains " (r12−a 1−(cid:0)a 2)7 (cid:1) idnenthsietysyosftethmespioslyvmareierdinacthceoradcicnegsstioblcehavionlulmenegtihs0s.o97thga/tcthme3m.Teahne r122+7r12(a 1+a 2)+6 a 12+7a 1a 2+a 22 Kuhnsegmentlengthbis18.3Å,whichisassignedtosevenstyrene + (r12+a 1+(cid:0)a 2)7 (cid:1) monomers. Theradiusofthenanoparticleis36Å.Thedensityof − r122+7r12(a 1−a 2)+6 a 12−7a 1a 2+a 22 athcetecrirsotsicslsinokfetdhepsoylystsetmyrsensetundaiendo,pia.ert.icthleeidseg1r.1ee5go/fcpmo3ly.mTehreizcahtiaorn- (r12+a 1−(cid:0)a 2)7 (cid:1) of the chain, the radius and the mean density of the crosslinked r122−7r12(a 1+a 2)+6 a 12−7a 1a 2+a 22 polystyrenenanoparticle,areincloseconnectionwithsystemsthat − (r12−a 1+(cid:0)a 2)7 (cid:1)# havIneboeuerninsittuidailecdaelcxupleartiimonesn,taallsyinbgyleMnaacnKopaayrtaincdlecios-wploarckeedrsa.t8,t9he (13) centre of the simulation box. The polymer chains are built ran- whereA12=4p 2eLJr 1r 2s L6J istheHamaker constant, a 1,a 2 the domly40withtheconstraintthatnoneofthepolymericbeadsover- radiiofthesphericalparticles,r thedistancebetweentheircen- laps with the nanoparticle. When more than one particles had to 12 tresandeLJ,s LJ theLennard-Jones energy anddistance crossin- becontainedinaconfiguration,thenthenanoparticleswereplaced teractionparametersforthepairofinteractionsites. Inthefollow- first at randomly selected positions, so that they did not overlap, ing, the radius of the particle representing a polymeric segment, andthenthepolymerwasbuiltaroundthem. Theinitialconfigura- Rb, is chosen such that (4/3)p R3b equals the volume per Kuhn tionscreatedbythismethodhavelargelocaldensityfluctuations. segment in the bulk polymer, as calculated from the mass corre- These fluctuations increase with increasing chain length. A zero temperatureMonteCarlooptimizationproceduretookplaceinor- 4 smallerchainsleadtodrasticvariationofdensityfluctuationswith- outaffectingdramaticallytheoverallenergyofthegrid. Aslarger moleculesareconsidered, moves ofthiskindbecome lessdrastic becausetheytendtocreatelargerdensityfluctuations(sincealarge number of segments change positions at the same time). On the other hand, intramolecular moves and especially the pivot move become very efficient for large chains, because of their ability to rearrangeaspecificpartof thechain. Thetotallengthof simula- tionsvariedbetween250and800millionsiterations,oneorderof magnitudeabovethetimeneededfortheend-to-endvectororien- tationalautocorrelationfunctiontodroptozero. 1.0 Figure4. Schematicsoftherelativesizeofnanoparticleandthefourchain 32 Kuhn segments/chain 64 Kuhn segments/chain lengthsunderconsideration. ForeachlengththeRg0 inpuremeltisused 122586 KKuuhhnn sseeggmmeennttss//cchhaaiinn forthecomparison.Thechainlengthsare32(a),64(b),128(c)and256(d) 0.8 Kuhnsegmentsperchainrespectively. dertoreducethedensityfluctuations. Duringthisstage,allmoves < (t)·(0) >uu 00..46 leadingtomoreuniformdensityprofile,thusdecreasingthedensity fluctuations,areaccepted.Intheoppositecase,theyarerejected.41 Five intermolecular moves were employed which treat the entire 0.2 chainsasrigidbodies: 0.0 • Translationofindividualchainsinarandomdirection 0 2 · 106 4 · M10o6nte Carlo ste6p ·s 106 8 · 106 1 · 107 • Rotationofindividualchainsbyrandomanglesaroundran- Figure5. Decayofthechainend-to-endvectororientationalautocorrela- domaxesthroughtheircentresofmass tionfunctionh~u(t)·~u(0)iforfoursystemsofdifferentchainlengthatbulk polymerdensity0.97 g .Theradiusofthenanoparticleis36Å. cm3 • Reflectionofindividualchainsatrandommirrorplanesgo- ingthroughthecentreofmass Results • Inversionofindividualchainsattheircentresofmass Local polymer structure in the presence of a • Exchangeoftwochainspreservingthecentreofmasspo- nanoparticle sitions Thelocalstructureinthevicinityofthenanoparticle attheKuhn WhentheMonte Carloproceeds, theinternal shape of thechains segment level isfirst studied through the radial mass density dis- isrestructuredbyfourintramolecular moves: theflip, theendro- tributionfrom thesurface of thenanoparticle, which is displayed tation,thereptationandthepivotmoves. Theexactmixofmoves inFigure6. Thebeadsofthepolymerhavebeenclassifiedin1.5- and acceptance rates of the moves are given in Table 1 for pure Å-thicksphericalshellswhoseoriginisnanoparticle’scentre. The meltpolystyrenesystem.Thenanoparticlesareallowedtotranslate distanceoftheclosestsegmentfromthenanoparticlesurfaceisap- inrandomdirectionsevery500MCsteps. proximately equal to 7Å, which corresponds to theradius of the Table1. MixtureofMCmovesusedforequilibrationofpuremeltofchains segment’sHamakerinteractionsite. Farawayfromthenanoparti- with32polymericsegmentsperchain cle, the density assumes its bulk experimental value for all chain Move %Attempted %Accepted lengths. Inthevicinityofthenanoparticle thereisastrong max- Rigidtranslation 8% 62.3% imum that reaches approximately 1.8 g , located at the distance cm3 Rigidrotation 8% 42.7% whereappearstheminimumoftheHamakerpotential. Thisvalue Rigidreflection 8% 39.9% isobserved for all chain lengths. The enhancement of polymeric Rigidinversion 8% 37.5% segmentdensityisverysimilarbetweenthefourchainlengthsun- Rigidexchange 8% 35.5% derconsideration.Althoughbeingclosetothenanoparticleleadsto Flip 15% 77.5% adecreaseofthechainentropy(allowedconformations arefewer Endrotation 15% 70.4% thaninthebulk),attractiveenergeticcontributionsduetothehigher Reptation 15% 61.8% densityofthenanoparticlesovercometheseentropiccontributions Pivot 15% 53.9% andleadtoanincreaseinlocaldensity. Monomerpackingeffects areimportant, sincemonomers formlayersaround thenanoparti- TodemonstratetheefficiencyoftheMCmethodinequilibrating cle. A second peak is also observed in the radial density distri- thesystemsunderstudy,theorientationalautocorrelationfunction butionofsegmentsandthepositionineachcasedoesnotdepend h~u(t)·~u(0)i of a unit vector directed along the chain end-to-end onthenumber of Kuhnsegments ofthechain. Thissecond peak vectorwasevaluatedasafunctionofnumber ofsimulationsteps. islocatedroughlyonesegmentdiameterawayfromthefirstpeak. Figure 5 shows the results for the four chain lengths considered Similar studies in the semi-dilute region11 have also shown that, here. The shorter chain systems exhibit faster equilibration rate as the polymer density was increased, the initially chain length- due to the increased acceptance of rigid moves. Rigid moves of dependent peaksbecomeindependent. Onthebasisofthepertur- 5 bationsinthetotaldensityprofilefromitsbulkvalue,thethickness oftheinterfacecouldbeestimatedaslessthan40Å.Thetypical 0.05 lengthscalecharacterizingthedensitydistributioninthevicinityof thenanoparticleisthedepletionlayerthicknessd ,whichisshown 0 intheinsetofFigure6. Thedepletionlayercanbedefinedasthe zonenexttotheparticlewheretherearenopolymermonomers.42 It isan equimolar dividing surface. The number of segments de- −0.05 pletedisestimatedbyanappropriatemassbalanceandleadstoan P >2 < expressionoftheform: −0.1 ¥ (Rn+d )3−R3n=3ZRn r2·(1−g(r))dr (14) −0.15 32 Kuhn segments/chain whereRnistheradiusofthenanoparticleandg(r)=r (r)/r 0isthe 12625486 KKKuuuhhhnnn ssseeegggmmmeeennntttsss///ccchhhaaaiiinnn pair distribution function between the nanoparticle and the poly- −0.2 0 20 40 60 80 100 120 mericsegments around it. Asshown intheinset toFigure6, the r − Rn [Å] thickness of thedepletion layer increases slightlywithincreasing thenumberofKuhnsegmentsinachain. Thevalueisclosetothe Figure7. AveragesecondLegendrepolynomialP2plottedagainstthedis- tanceofsegmentifromthesurfaceofthenanoparticle in5-Å-thickbins. radiuscalculatedforthesegment’ssphericalinteractionsite. The P2 polynomial is calculated between the vector connecting the cen- treofthenanoparticleandaKuhnsegmentiandthebondvectorofKuhn segments iandi+1. Theradius ofthenanoparticle is36Å.Apositive (negative) orderparameterindicates anorientational tendencythatisper- 2 Å] pendicular(parallel)tothenanoparticle’ssurface. 3m] 1111....2468 Depletion thickness [ 6666 ....61234 0 50 100 150 200 250 fthuencvtiaorniastiboentwofeetnhepotolytamlearnicdstehgeminetnetrsm. oTlehceulcaorrrpealairtiodinsthriobluetieofn- Density [g/c 0 .18 Segments/chain fsehcotrtisleenvgidthenstcianleths,etihnetetromtaolledciustlrairbduitsiotrnibfuutniocntiofunndcitvioenrgs.esOansv1e/ryr because of the intramolecular contribution dictated by the freely 0.6 jointed model. Thisis an artificial effect, caused by the fact that 0.4 32 Kuhn segments/chain 64 Kuhn segments/chain chainself-intersectionisnotpreventedinthefreelyjointedchains 0.2 128 Kuhn segments/chain 256 Kuhn segments/chain usedinourcalculations.Intheregimeofsmalldistances,segments Bulk polymer density at 400K 0 0 20 40 60 80 100 120 of other molecules are expelled from the volume of a reference r − Rn [Å] chain and this gives rise to a correlation hole in the intermolecu- larpairdistributionfunction.Thespikeinthetotalpairdistribution Figure6. Radialmassdensitydistributionfromthesurfaceofthenanopar- functionisanintramolecularfeature,causedbypairsofsegments ticleaccumulatedin1.5-Å-thickbins,forN=32(continuousline),N=64 (long-dashedline),N=128(short-dashedline)andN=256(dottedline). connecteddirectlybyaKuhnsegment. Ifanatomisticdescription Theradiusandthemassofthenanoparticleare36Åand135kDa,respec- wereused,thisspikewouldbereplacedbyaseriesofintramolecu- tively. Thestraightdot-dashedlinerepresentsthebulkpolymerdensityat larpeaksreflectingthebondedgeometryandconformationalpref- 400K. Intheinset, thevariation ofthedepletion layer thickness d with erences of polystyrene molecules. On the other hand, for large chainlengthisshown. length scales, the intermolecular distribution function approaches Thelocalorientationofchainsegmentsinducedbythenanopar- unity, astheintramoleculardistributionfunctionapproaches zero. ticlecanbequantifiedbythesecondorderLegendrepolynomialP. AsshownintheinsetofFigure8,longerchainsexhibit“correlation 2 Anangleq maybedefinedbythebondvectoroftwoconsecutive hole”effectforslightlylongerdistances. Kuhnsegmentsiandi+1andthevectorconnectingthecentreof thenanoparticlewiththeKuhnsegmenti.Thisangleisusedtode- finetheP2function: P2= 12 3hcos2q i−1 .P2wouldassumeval- 1.4 uesof−0.5,0.0,and1.0forbondscharacterizedbyperfectlyparal- 1 ltPAetasehaifn2dlnfedg,efegpirrcsvetoaat.enesnmrnnTttdidioahoctbnhllemtoeoeon,tb,hcrbdroaieeeeennnisnsddoptotrsareraepiisctleeesioytnonriifivpgtntnaaeeengtdlnteniyeoddia.tnnnianFctdanootusilhgpglt(cid:0)eeatdauhonrrirevstetoiiibtbccarr7eiiililnnbeeldys,iuniittsanttyrtiapcooowtolcninatuofghhymneitoeschrf(cid:1)ruhteiehlfnblaioeptaotterasternriradvitfdtdhaieKsiciecnaltueaeols5.hrdh-aetnCÅhiorseserwht-tertaesseightisubamirnturckufktec.lcaienhtocbnutaTenigrinrhenooteshdesff-. ment − segment pair distribution function g(r) 0111.... 91231 00000000 ........0088889999..2468246889 0 20 40 60NNNN====1225368624 80 100 examined.Theshorterthechain,themoreintensetheorientational Seg Intermolecular g(r) − 32 segments/chain effects are. Kuhn segment orientation effects are weak beyond a Total g(r) − 32 segments/chain 0.8 distance of two Kuhn segment lengths from the particle surface. 0 20 40 60 80 100 120 140 Distance between two polymeric segments [Å] Similarbehavior hasbeenobserved inmolecular dynamics simu- lationsofsilicaparticlesdispersedinapolyethylene-likematrix.43 Figure8. Polymericsegments, totalandintermolecular pairdistribution functions, accumulated in 1-Å-thick bins. One chain length is depicted, Oneofthemostimportantaspectsofstructureinpolymermelts N=32(mainfigure). Theintermolecularpairdistributionfunction,inthe presenceofananoparticleofradius36Å,isincludedintheinset. istheso-called“correlationhole”effect. Itarisesindense poly- mericfluidsbecauseofthemelt’sincompressibility.Figure8shows 6 Chainstructureinthepresenceofananoparticle Complementarytothestudyoflocalstructureatthesegmentlevel, longrangestructuralfeaturesmayberevealedbyprobingproper- tiesatthelevelofentirechains. Thedistributionofthecentre-of- mass(COM)oftheentirechainsaroundthenanoparticle,whichis showninFigure9, issuchanexample. TheCOMsof thechains areclassifiedin4.5-Å-thickbins.Itshouldbenotedthattheresults attheleveloftheentirechainsaremorepronetostatisticalnoise, becausethenumber ofbinnedchainsisconsiderablesmallerthan thenumberofpolymericbeads. Therearepolymericchainswhose COMpositionliesinsidethenanoparticle.Thesechainsengulfthe nanoparticles. Theshorterthepolymericchains, themoreintense thepenetrationofthenanoparticlesintothechains. 0.55 Nanoparticle − chain centre of mass pair distribution function 00001111 ........01224682468 1263254286 KKKKuuuuhhhhnnnn sssseeeeggggmmmmeeeennnnttttssss////cccchhhhaaaaiiiinnnn Spans of chains (normalized by their sum) 000 0000...234....2345555−40 −20 0 20 r − Rn [4Å0] 60 80WWW231///WWW 100 −40 −20 0 20 40 60 80 100 (a) r − Rn [Å] Figure9. Chaincentreofmassdistribution, accumulated in4.5-Å-thick bins, for N=32 (continuous line), N=64(long-dashed line), N=128 6000 (short-dashedline)andN=256(dottedline). L12 L22 Theoverallshapeofthechainsisexploredbydeterminingtheir 5000 L32 cissasnieplrooegaFnsmndiessgeeutaofinhrnftneedect1cdhlt0hohea(aueacidsne)cm,ioigslsareeedlasglniedtnvmrssagoteltnunotogoetrltstyhcRhoelouoafrcbufhtfoidheonn.ecmcitarlOebnudridsuacirdboMiybnauonasttxazhholuaeyftrths:pgtia4hsry4te,ersactpoehtarvineneoecysnreecaantoloerltmenfesdsphttohhlafreeeposte.erdslpSiosymhppfeaaeetrhnnnniess--- 2R Tensor Eigenvalues [Å ]g 234000000000 Random walk expeLc1t2e+dL 2v2a+luLe3s2 calnanoparticle. Nearthesurfaceofthenanoparticle,chainstend 1000 to expand along their main axis (largest span,W , increases) and 3 shrink along the smaller ones (spansW2 andW1 decrease). The 0−40 −20 0 20 40 60 80 100 sametendencyisrevealedthroughanexaminationoftheeigenval- r − Rn [Å] ues of the chain radius of gyration tensor. In the polymer melt, polymershavetheshapeofflattenedellipsoids.45 Foranellipsoid (b) formedbyarandomwalkmodel,theratioofthethreeeigenvalues Figure10. Overallshapeofchainsasafunctionofcentreofmassposition. isreportedtobe12:2.7:1.46 Inoursimulations,eventhesmall- (a,top)Spansofchains,normalizedbytheirsumW=W1+W2+W3. (b, est chains are in excellent agreement with this prediction, as far bottom) Eigenvalues of the chain radius of gyration tensor L12,L22,L32. Theseplotsrevealthattheoverallshapeofchainsegmentcloudisdependent asthesmallandthemediumellipsoidalsemiaxes(L andL )are 1 2 onpositionrelativetothenanoparticle.Thesystemsconsistsofchainswith concerned. Atshorterdistancesfromthenanoparticlecentrethan 32Kuhnsegmentsperchainandonenanoparticleofradius36Å. themeansizeofthechain,anexpansionofthechainsacrosstheir principal semiaxis (L ) isfound. This leads toan increase of ra- 3 diusofgyrationR2g=L12+L22+L32 nearthenanoparticle. The deformation of themoleculesissmaller forlonger chains (whose dimensionsexceedbyfartheradiusofthenanoparticle). Farfrom thesurfaceofthenanoparticle,thechaindimensions,estimatedei- therasspansorasradiusofgyrationtensoreigenvalues,reachtheir bulk average values, since the molecules are not affected by the presenceofthenanoparticle. Theorientationofchainsegmentcloudswithrespecttothesur- faceofthenanoparticleisexploredbycomputingorderparameters forchainspansandradiusofgyrationtensoreigenvectors.47,48The definitionoftheorderparameterforspansisanalogoustothatused 7 hereforthesegmentsSW =(1/2) 3hcos2(q )i−1 .Theangleq is with increasing nanoparticle volume fraction is observed for all formedbetweenthelargerspanW andthevector connecting the chain lengths. This expansion is maximal for 32 Kuhn segments 3 (cid:2) (cid:3) centreofthenanoparticleandthecentreofmassofthechain. The perchain, wheretheradiusofgyrationRg0=42Åiscomparable sameisdoneforthesmallestspan,W1. PlottedinFigure11(a)are totheradiusofthenanoparticleRn=36Å.Itseemsthatthereis theorderparametersfortheshortestandlongestspanasfunctions atendencyofchainstoswellwhentheirdimensionisequal toor ofthechaincentreofmassposition. Inthesamefashion,SListhe approachesthedimensionofthenanoparticle. Thisobservationis order parameter of the eigenvectors corresponding to the greater inverygoodquantitiveagreementwithexperimentaldatareported and smaller eigenvalues (Figure 11(b)). In the interfacial region, for the same system.8 In all other cases, the swelling due to the weobserveastrongtendencyforthelongestspantoorientparal- presenceofthenanoparticlesishardlydistinguished. lel to the surface and the shortest span to orient perpendicular to thesurfaceofthenanoparticle. Thistendencyremainsunchanged a b 1.25 1.025 if,insteadofspans,theprincipalaxesofinertia(i.e.,theeigenvec- 1.2 1.02 torsoftheradiusofgyrationtensor)areusedasmeasuresofshape 1.15 1.015 (Figure11(b)). Thereorientationofchainsisconfinedtoaregion 1.1 1.01 whosewidthiscommensuratewithRg. 1.05 1.005 1 Rg0 = 42 Å 1 Rg0 = 59 Å 0 0.05 0.1 0.15 0 0.05 0.1 0.15 Volume fraction of nanoparticles Volume fraction of nanoparticles 1 c d Longest span Shortest span 1.04 1.06 1.035 1.05 0.75 1.03 1.025 1.04 1.02 1.03 0.5 1.015 1.02 1.01 SW 0.25 1.00 15 Rg0 = 84 Å 1.0 11 Rg0 = 120 Å 0 0.05 0.1 0.15 0 0.05 0.1 0.15 Volume fraction of nanoparticles Volume fraction of nanoparticles 0 Figure12. Deviation of radius of gyration Rg from its reference value (meltwithoutnanoparticles) Rg0 forthefourchainlengths underconsid- −0.25 eration(a,b,c,dfor32,64,128and256Kuhnsegmentsperpolymericchain respectively). −0.5 −40 −20 0 20 40 60 80 100 In the presence of many nanoparticles, structural features may r − Rn [Å] be revealed by probing the pair distribution function between the (a) nanoparticles and the polymer chain centres of mass. The COM ofthechainsareaccumulatedin4.5-Å-thickbins(Figure13). The pairdistributionfunctiondepicted, isindicativeoftheengulfment 1 of nanoparticles by the polymeric chains. There are polymeric Longest axis Shortest axis chainsofeverychainlength, whoseCOMpositionliesinsidethe 0.75 nanoparticle. ThereisaremarkabledifferencebetweenFigure13 (many nanoparticles) and Figure 9 (one nanoparticle). In Figure 0.5 9, theCOMsof longer chains aremoredepleted inthespace oc- cupied by the nanoparticle. In Figure 13, the shortest chains of SL 0.25 N=32exhibitatendencytosurroundthenanoparticles,havinga clearmaximumintheirCOMdistributioninsidethenanoparticle, 0 veryclosetoitscentre,alsooutsidethenanoparticle,somedistance fromitssurface,withaminimuminbetween.Interestingly,within- −0.25 creasingdistancethenanoparticle-chaincentreofmassdistribution goesthroughaminimumandthenrisesagainashortdistanceaway −0.5 −40 −20 0 20 40 60 80 100 fromthenanoparticlesurface,becauseofthecontributionofchains r − Rn [Å] whichareadsorbedto,butdonotengulfthenanoparticle. (b) Conclusions Figure11. (a,top)Orderparametersforthelongestandshortestspansof chainsasfunctionsofcentreofmassposition.(b,bottom)Orderparameters fortheeigenvectorscorrespondingtothelargestandthesmallesteigenval- Thestructureofapolymermatrixsurroundinganimmersedspher- uesofthechainradiusofgyrationtensorasfunctionsonthecentreofmass icalnanoparticlewasstudiedindetailbothatthesegmentandthe position. Thesystemsconsistsofchainswith32Kuhnsegmentsperchain chainlevels. Thesimulationmethodemployed reliesonahybrid andonenanoparticleofradius36Å. MonteCarloformalism. Itisafieldtheoreticapproach, basedon thegroundsoftheself-consistentfield,whichcantreatefficiently large systems. The system investigated bears great resemblance Chain conformation in the presence of many withanathermal,all-polystyrenenanocompositematerialthathas nanoparticles beenstudiedexperimentally. Severalconformationalpropertiesof thesystemhavebeenexamined. Atthesegmentlevel,anincrease The values of radius of gyration Rg relative to the value for the ofthelocalpolymerdensityaroundthenanoparticleisfound.Den- purepolymermeltR ,areshowninFigure12asafunctionofthe g0 sityprofilesareweaklydependentonthechainlength.Anincrease nanoparticle volume fraction for the four different chain lengths ofthedegreeofpolymerizationofthechainresultsinslightlyin- used in this work. In general, an expansion of polymeric chains creased thickness of the depletion layer. The bonds tend to ori- 8 2 32 segments/chain (9) Mackay,M.E.;Tuteja,A.;Duxbury,P.M.;Hawker,C.J.;Horn,B.V.; Chain centre of mass pair distribution function 001111 ......1682468 12625486 ssseeegggmmmeeennntttsss///ccchhhaaaiiinnn ((((((111111542310)))))) 1SPd20DHCGDKM3ce03ohoauoiai004mmle.xaxLcl4,9mn2,aa,kpu0,0s,sL0Caoz.181ttZ1yu.saaC..42,0oMk.krJ90h;i,,ii.aM0,essC,.J1g;,,m59.H4h.aJ.3MAM.,ea,o3EPn3y.-A..5;;C,8a;.h–;d.rGCyhC–9aeRse.hDm3h.;4L.oe4;2eaK8alun2n0Gon,az,r.,0,,PimurYs8AaYorhTd.,in.l-.am.-y;1dLHgLmS0eaT.a.;a,,nc;.,ew;GHh6,Ardw5sRku.eT..0e.zeJRur.P.miS;tz.Ncae;eaPibjaErneaol,tn,,to.mKxc,OMeA.epJb.Soa.;.2e;.st0drJeoCr.0erH,i.u6aJJPo2r,.,.,r0aA3.CAb01OD.lh3;.1ope,.RJ,,mi2.1noJL,C..7.d.7;4SJrPh6Ã.0oeh2V.Jlmyi–.dasg.7Cn.uSP6h2et6hHaze0.yt,m0oesJ5r...Mn,2PP,01ahh02tByye93ssr.,.,..; Nanoparticle − 00..24 (((111768))) CHAFrlareatlhdrl,eirniLJcda.koyMsnaor.nP;a,mrSeGcash.snw,,H2Ke.0i.z0TSe6hr..e,SK.e.qMSua.ilcJibr.orCmiuhomelmetc.huPeloehsryys2.0o20f08i0,n84h,1o1,m29o84g,3e20n3–e49o94u03s18.p.olymers; (19) Surve,M.;Pryamitsyn,V.;Ganesan,V.Langmuir2006,22,969–981. 0−40 −20 0 20 40 60 80 100 120 (20) Surve,M.;Pryamitsyn,V.;Ganesan,V.Macromolecules2007,40,344– r − Rn [Å] 354. (21) Ganesan, V.; Khounlavong, L.; Pryamitsyn, V. Phys. Rev. E 2008, 78, 051804. Figure13. Chaincentreofmassdistribution,accumulatedin4.5-Å-thick (22) Harton,S.E.;Kumar,S.K.J.Polym.Sci.,PartB:Polym.Phys.2008,46, bins. Thesystemunderconsiderationconsistofdispersednanoparticlesof 351–358. 36Åatvolumefraction15%. (23) Sides,S.W.;Kim,B.J.;Kramer,E.J.;Fredrickson,G.H.Phys.Rev.Lett. 2006,96,250601. (24) Thompson,R.B.;Ginzburg,V.V.;Matsen,M.W.;Balazs,A.C.Macro- molecules2002,35,1060–1071. ent paralleltothenanoparticle surface, asrevealedbythesecond (25) Buxton,G.A.;Lee,J.Y.;Balazs,A.C.Macromolecules2003,36,9631– 9637. Legendrepolynomial.Alltheseeffectshaveacharacteristiclength (26) Lee,J.Y.;Shou,Z.;Balazs,A.C.Phys.Rev.Lett.2003,91,136103. scalecommensuratewiththechainsegmentsize. (27) Daoulas,K.C.;Müller,M.J.Chem.Phys.2006,125,184904. (28) Daoulas,K.C.;Müller,M.;Pablo,J.;Nealey,P.;Smith,G.SoftMatter At the chain level, chain centres of mass are able to penetrate 2006,2,573–583. theinterioroftheparticle,aschainsengulftheparticle. Thisphe- (29) Detcheverry,F.A.;Pike,D.Q.;Nealey,P.F.;Müller,M.;dePablo,J.J. Phys.Rev.Lett.2009,102,197801. nomenonismorepronouncedwhentheradiusofgyrationofchains (30) Detcheverry,F.A.;Kang,H.;Daoulas,K.C.;Müller,M.;Nealey,P.F.; iscomparableinsizetothenanoparticle. Theformationofchain dePablo,J.J.Macromolecules2008,41,4989–5001. (31) Stoykovich,M.P.;Daoulas,K.C.;Müller,M.;Kang,H.;dePablo,J.J.; layersaroundtheparticleissuggestedbytheparticle-polymercen- Nealey,P.F.Macromolecules2010,43,2334–2342. treofmasspairdistributionfunction.Thesizeandtheshapeofthe (32) Helfand,E.;Tagami,Y.J.Chem.Phys.1972,56,3592. (33) Dodd,L.R.;Theodorou,D.N.Mol.Phys.1991,72,1313. chainsarealsoaffected. Aflatteningofpolymer moleculeswhen (34) Laradji,M.;Guo,H.;Zuckermann,M.J.Phys.Rev.E1994,49,3199– theircentreofmassisclosetothenanoparticlecentreisrevealedby 3206. (35) Hiemenz, P. C. Principles of colloid and surface chemistry, 2nd ed.; boththechainspansandtheeigenvaluesoftheradiusofgyration Dekker,1977. tensor.Thisdeformationofthepolymermoleculesissmallforlong (36) Hamaker,H.Physica(Amsterdam)1937,IV,1058. (37) Everaers,R.;Ejtehadi,M.Phys.Rev.E2003,67,041710. chains. (38) Spyriouni,T.;Tzoumanekas,C.;Theodorou,D.;MÃijller-Plathe,F.;Mi- Inthecaseofthedispersionofmanynanoparticles,deformation lano,G.Macromolecules2007,40,3876–3885. ofthechainshape isobserved. Thechainswhichsharethesame (39) Good,R.J.;Hope,C.J.J.Chem.Phys.1971,55,111. (40) Marsaglia,G.Ann.Math.Stat.1972,43,645–646. length scale withthe dispersed particles tend toswell. This isin (41) Auhl,R.;Everaers,R.;Grest,G.S.;Kremer,K.;Plimpton,S.J.J.Chem. agreementwithrecentneutronscatteringmeasurements.Theradius Phys.2003,119,12718. (42) Aarts,D.G.L.;Tuinier,R.;Lekkerkerker,H.N.W.J.Phys.: Condens. ofgyrationincreaseswithincreasednanoparticlevolumefraction. Matter2002,14,7551–7561. (43) Brown,D.;Marcadon,V.;MÃl’lÃl’,P.;AlbÃl’rola,N.D.Macromolecules 2008,41,1499–1511. Acknowledgments (44) Rubin,J.;J.Mazur,Macromolecules1977,10,139–149. (45) Theodorou,D.N.;Suter,U.W.Macromolecules1985,18,1206–1214. (46) Picu,R.C.;Ozmusul,M.S.J.Chem.Phys.2003,118,11239–11248. ThisworkwasfundedbytheEuropeanUnionundertheFP7-NMP- (47) Mansfield,K.F.;Theodorou,D.N.Macromolecules1990,23,4430–4445. (48) Mansfield,K.F.;Theodorou,D.N.Macromolecules1991,24,4295–4309. 2007 program, Nanomodel Grant Agreement SL-208-211778. Computational work was carried out under the HPC-EUROPA2 project (project number: 228398) with the support of the Euro- pean Commission Capacities Area - Research Infrastructures Ini- tiative. FruitfuldiscussionswithDr. KostasDaoulasaregratefully acknowledged. References References (1) Gersappe,D.Phys.Rev.Lett.2002,89,058301. (2) Balazs,A.C.;Emrick,T.;Russel,T.P.Science2006,314,1107. (3) Bansal, A.; Yang, H.; Li, C.; Benicewiz, B. C.; Kumar, S. K.; Schadler,L.S.J.Polym.Sci.,PartB:Polym.Phys.2006,44,2944–2950. (4) Lee,J.Y.;Buxton,G.A.;Balazs,A.C.J.Chem.Phys.2004,121,5531– 5540. (5) Bockstaller,M.R.;Thomas,E.L.Phys.Rev.Lett.2004,93,166106. (6) Si,M.;Araki,T.;Ade,H.;Kilcoyne,A.L.D.;Fisher,R.;Sokolov,J.C.; Rafailovich,M.H.Macromolecules2006,39. (7) Stratford,K.;Adhikari,R.;Pagonabarraga,I.;Desplat,J.-C.;Cates,M.E. Science2005,309,2198–2201. (8) Tuteja,A.; Duxbury,P.M.; Mackay,M.E.Phys.Rev.Lett.2008, 100, 077801. 9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.