ebook img

Monte Carlo Methods and Models in Finance and Insurance PDF

485 Pages·2010·5.049 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Monte Carlo Methods and Models in Finance and Insurance

Monte Carlo Methods and Models in Finance and Insurance CHAPMAN & HALL/CRC Financial Mathematics Series Aims and scope: The field of financial mathematics forms an ever-expanding slice of the financial sector. This series aims to capture new developments and summarize what is known over the whole spectrum of this field. It will include a broad range of textbooks, reference works and handbooks that are meant to appeal to both academics and practitioners. The inclusion of numerical code and concrete real- world examples is highly encouraged. Series Editors M.A.H. Dempster Dilip B. Madan Rama Cont Centre for Financial Robert H. Smith School Center for Financial Research of Business Engineering Judge Business School University of Maryland Columbia University University of Cambridge New York Published Titles American-Style Derivatives; Valuation and Computation, Jerome Detemple Analysis, Geometry, and Modeling in Finance: Advanced Methods in Option Pricing,  Pierre Henry-Labordère Credit Risk: Models, Derivatives, and Management, Niklas Wagner Engineering BGM, Alan Brace Financial Modelling with Jump Processes, Rama Cont and Peter Tankov Interest Rate Modeling: Theory and Practice, Lixin Wu An Introduction to Credit Risk Modeling, Christian Bluhm, Ludger Overbeck, and Christoph Wagner Introduction to Stochastic Calculus Applied to Finance, Second Edition,  Damien Lamberton and Bernard Lapeyre Monte Carlo Methods and Models in Finance and Insurance, Ralf Korn, Elke Korn,  and Gerald Kroisandt Numerical Methods for Finance, John A. D. Appleby, David C. Edelman, and John J. H. Miller Portfolio Optimization and Performance Analysis, Jean-Luc Prigent Quantitative Fund Management, M. A. H. Dempster, Georg Pflug, and Gautam Mitra Robust Libor Modelling and Pricing of Derivative Products, John Schoenmakers Stochastic Financial Models, Douglas Kennedy Structured Credit Portfolio Analysis, Baskets & CDOs, Christian Bluhm and Ludger Overbeck Understanding Risk: The Theory and Practice of Financial Risk Management, David Murphy Unravelling the Credit Crunch, David Murphy Proposals for the series should be submitted to one of the series editors above or directly to: CRC Press, Taylor & Francis Group 4th, Floor, Albert House 1-4 Singer Street London EC2A 4BQ UK Monte Carlo Methods and Models in Finance and Insurance Ralf Korn Elke Korn Gerald Kroisandt CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2010 by Taylor and Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number: 978-1-4200-7618-9 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging‑in‑Publication Data Korn, Ralf. Monte Carlo methods and models in finance and insurance / Ralf Korn, Elke Korn, Gerald Kroisandt. p. cm. -- (Financial mathematics series) Includes bibliographical references and index. ISBN 978-1-4200-7618-9 (hardcover : alk. paper) 1. Business mathematics. 2. Insurance--Mathematics. 3. Monte Carlo method. I. Korn, Elke, 1962- II. Kroisandt, Gerald. III. Title. IV. Series. HF5691.K713 2010 518’.282--dc22 2009045581 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents List of Algorithms xi 1 Introduction and User Guide 1 1.1 Introduction and concept . . . . . . . . . . . . . . . . . . . . 1 1.2 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 How to use this book . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Further literature . . . . . . . . . . . . . . . . . . . . . . . . 3 1.5 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Generating Random Numbers 5 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 How do we get random numbers? . . . . . . . . . . . . 5 2.1.2 Quality criteria for RNGs . . . . . . . . . . . . . . . . 6 2.1.3 Technical terms . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Examples of random number generators . . . . . . . . . . . . 8 2.2.1 Linear congruential generators . . . . . . . . . . . . . 8 2.2.2 Multiple recursive generators . . . . . . . . . . . . . . 12 2.2.3 Combined generators. . . . . . . . . . . . . . . . . . . 15 2.2.4 Lagged Fibonacci generators . . . . . . . . . . . . . . 16 2.2.5 F2-linear generators . . . . . . . . . . . . . . . . . . . 17 2.2.6 Nonlinear RNGs . . . . . . . . . . . . . . . . . . . . . 22 2.2.7 More random number generators . . . . . . . . . . . . 24 2.2.8 Improving RNGs . . . . . . . . . . . . . . . . . . . . . 24 2.3 Testing and analyzing RNGs . . . . . . . . . . . . . . . . . . 25 2.3.1 Analyzing the lattice structure . . . . . . . . . . . . . 25 2.3.2 Equidistribution . . . . . . . . . . . . . . . . . . . . . 26 2.3.3 Diffusion capacity . . . . . . . . . . . . . . . . . . . . 27 2.3.4 Statistical tests . . . . . . . . . . . . . . . . . . . . . . 27 2.4 Generating random numbers with general distributions . . . 31 2.4.1 Inversion method . . . . . . . . . . . . . . . . . . . . . 31 2.4.2 Acceptance-rejection method . . . . . . . . . . . . . . 33 2.5 Selected distributions . . . . . . . . . . . . . . . . . . . . . . 36 2.5.1 Generating normally distributed random numbers . . 36 2.5.2 Generating beta-distributed RNs . . . . . . . . . . . . 38 2.5.3 Generating Weibull-distributed RNs . . . . . . . . . . 38 2.5.4 Generating gamma-distributed RNs . . . . . . . . . . 39 2.5.5 Generating chi-square-distributed RNs . . . . . . . . . 42 v vi 2.6 Multivariate random variables . . . . . . . . . . . . . . . . . 43 2.6.1 Multivariate normals . . . . . . . . . . . . . . . . . . . 43 2.6.2 Remark: Copulas . . . . . . . . . . . . . . . . . . . . . 44 2.6.3 Sampling from conditional distributions . . . . . . . . 44 2.7 Quasirandomsequences as a substitute for random sequences 45 2.7.1 Halton sequences . . . . . . . . . . . . . . . . . . . . . 47 2.7.2 Sobol sequences. . . . . . . . . . . . . . . . . . . . . . 48 2.7.3 Randomized quasi-Monte Carlo methods. . . . . . . . 49 2.7.4 Hybrid Monte Carlo methods . . . . . . . . . . . . . . 50 2.7.5 Quasirandom sequences and transformations into other random distributions . . . . . . . . . . . . . . . 50 2.8 Parallelizationtechniques . . . . . . . . . . . . . . . . . . . . 51 2.8.1 Leap-frog method . . . . . . . . . . . . . . . . . . . . 51 2.8.2 Sequence splitting . . . . . . . . . . . . . . . . . . . . 52 2.8.3 Several RNGs . . . . . . . . . . . . . . . . . . . . . . . 53 2.8.4 Independent sequences . . . . . . . . . . . . . . . . . . 53 2.8.5 Testing parallel RNGs . . . . . . . . . . . . . . . . . . 53 3 The Monte Carlo Method: Basic Principles 55 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2 The strong law of large numbers and the Monte Carlo method 56 3.2.1 The strong law of large numbers . . . . . . . . . . . . 56 3.2.2 The crude Monte Carlo method . . . . . . . . . . . . . 57 3.2.3 The Monte Carlo method: Some first applications . . 60 3.3 ImprovingthespeedofconvergenceoftheMonteCarlomethod: Variance reduction methods . . . . . . . . . . . . . . . . . . 65 3.3.1 Antithetic variates . . . . . . . . . . . . . . . . . . . . 66 3.3.2 Control variates . . . . . . . . . . . . . . . . . . . . . 70 3.3.3 Stratified sampling . . . . . . . . . . . . . . . . . . . . 76 3.3.4 Variance reduction by conditional sampling . . . . . . 85 3.3.5 Importance sampling . . . . . . . . . . . . . . . . . . . 87 3.4 Further aspects of variance reduction methods . . . . . . . . 97 3.4.1 More methods . . . . . . . . . . . . . . . . . . . . . . 97 3.4.2 Application of the variance reduction methods . . . . 100 4 Continuous-Time Stochastic Processes: Continuous Paths 103 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.2 Stochastic processes and their paths: Basic definitions . . . . 103 4.3 The Monte Carlo method for stochastic processes . . . . . . 107 4.3.1 Monte Carlo and stochastic processes . . . . . . . . . 107 4.3.2 Simulating paths of stochastic processes: Basics. . . . 108 4.3.3 Variance reduction for stochastic processes . . . . . . 110 4.4 Brownian motion and the Brownian bridge . . . . . . . . . . 111 4.4.1 Properties of Brownian motion . . . . . . . . . . . . . 113 4.4.2 Weak convergence and Donsker’s theorem . . . . . . . 116 vii 4.4.3 Brownian bridge . . . . . . . . . . . . . . . . . . . . . 120 4.5 Basics of Itˆo calculus . . . . . . . . . . . . . . . . . . . . . . 126 4.5.1 The Itoˆ integral. . . . . . . . . . . . . . . . . . . . . . 126 4.5.2 The Itoˆ formula. . . . . . . . . . . . . . . . . . . . . . 133 4.5.3 Martingale representation and change of measure . . . 135 4.6 Stochastic differential equations . . . . . . . . . . . . . . . . 137 4.6.1 Basic results on stochastic differential equations. . . . 137 4.6.2 Linear stochastic differential equations . . . . . . . . . 139 4.6.3 The square-rootstochastic differential equation . . . . 141 4.6.4 The Feynman-Kac representation theorem . . . . . . . 142 4.7 Simulating solutions of stochastic differential equations . . . 145 4.7.1 Introduction and basic aspects . . . . . . . . . . . . . 145 4.7.2 Numerical schemes for ordinary differential equations 146 4.7.3 Numerical schemes for stochastic differential equations 151 4.7.4 Convergence of numerical schemes for SDEs . . . . . . 156 4.7.5 More numerical schemes for SDEs . . . . . . . . . . . 159 4.7.6 Efficiency of numerical schemes for SDEs . . . . . . . 162 4.7.7 Weak extrapolation methods . . . . . . . . . . . . . . 163 4.7.8 The multilevel Monte Carlo method . . . . . . . . . . 167 4.8 Which simulation methods for SDE should be chosen? . . . 173 5 Simulating Financial Models: Continuous Paths 175 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 5.2 Basics of stock price modelling . . . . . . . . . . . . . . . . . 176 5.3 A Black-Scholes type stock price framework . . . . . . . . . 177 5.3.1 An important special case: The Black-Scholes model . 180 5.3.2 Completeness of the market model . . . . . . . . . . . 183 5.4 Basic facts of options . . . . . . . . . . . . . . . . . . . . . . 184 5.5 An introduction to option pricing . . . . . . . . . . . . . . . 187 5.5.1 A short history of option pricing . . . . . . . . . . . . 187 5.5.2 Option pricing via the replication principle . . . . . . 187 5.5.3 Dividends in the Black-Scholes setting . . . . . . . . . 195 5.6 Option pricing and the Monte Carlo method in the Black- Scholes setting . . . . . . . . . . . . . . . . . . . . . . . . . . 196 5.6.1 Path-independent European options . . . . . . . . . . 197 5.6.2 Path-dependent European options . . . . . . . . . . . 199 5.6.3 More exotic options . . . . . . . . . . . . . . . . . . . 210 5.6.4 Data preprocessing by moment matching methods . . 211 5.7 Weaknesses of the Black-Scholes model . . . . . . . . . . . . 213 5.8 Local volatility models and the CEV model . . . . . . . . . . 216 5.8.1 CEV option pricing with Monte Carlo methods . . . . 219 5.9 An excursion: Calibrating a model . . . . . . . . . . . . . . . 221 5.10 Aspects of option pricing in incomplete markets . . . . . . . 222 5.11 Stochastic volatility and option pricing in the Heston model 224 5.11.1 The Andersen algorithm for the Heston model . . . . 227 viii 5.11.2 The Heath-Platen estimator in the Heston model . . . 232 5.12 Variance reduction principles in non-Black-Scholesmodels . 238 5.13 Stochastic local volatility models . . . . . . . . . . . . . . . . 239 5.14 Monte Carlo option pricing: American and Bermudan options 240 5.14.1 TheLongstaff-Schwartzalgorithmandregression-based variants for pricing Bermudan options . . . . . . . . . 243 5.14.2 Upper price bounds by dual methods. . . . . . . . . . 250 5.15 Monte Carlo calculation of option price sensitivities . . . . . 257 5.15.1 The role of the price sensitivities . . . . . . . . . . . . 257 5.15.2 Finite difference simulation . . . . . . . . . . . . . . . 258 5.15.3 The pathwise differentiation method . . . . . . . . . . 261 5.15.4 The likelihood ratio method . . . . . . . . . . . . . . . 264 5.15.5 Combining the pathwise differentiation and the likelihood ratio methods by localization . . . . . . . . 265 5.15.6 Numerical testing in the Black-Scholes setting . . . . . 267 5.16 Basics of interest rate modelling . . . . . . . . . . . . . . . . 269 5.16.1 Different notions of interest rates . . . . . . . . . . . . 270 5.16.2 Some popular interest rate products . . . . . . . . . . 271 5.17 The short rate approach to interest rate modelling . . . . . . 275 5.17.1 Change of numeraire and option pricing: The forward measure . . . . . . . . . . . . . . . . . . . . . . . . . . 276 5.17.2 The Vasicek model . . . . . . . . . . . . . . . . . . . . 278 5.17.3 The Cox-Ingersoll-Ross(CIR) model . . . . . . . . . . 281 5.17.4 Affine linear short rate models . . . . . . . . . . . . . 283 5.17.5 Perfect calibration: Deterministic shifts and the Hull- White approach . . . . . . . . . . . . . . . . . . . . . 283 5.17.6 Log-normal models and further short rate models . . . 287 5.18 The forward rate approach to interest rate modelling . . . . 288 5.18.1 The continuous-time Ho-Lee model . . . . . . . . . . . 289 5.18.2 The Cheyette model . . . . . . . . . . . . . . . . . . . 290 5.19 LIBOR market models . . . . . . . . . . . . . . . . . . . . . 293 5.19.1 Log-normal forward-LIBORmodelling . . . . . . . . . 294 5.19.2 Relation between the swaptions and the cap market . 297 5.19.3 Aspects of Monte Carlo path simulations of forward- LIBOR rates and derivative pricing. . . . . . . . . . . 299 5.19.4 Monte Carlo pricing of Bermudan swaptions with a parametric exercise boundary and further comments . 305 5.19.5 Alternatives to log-normalforward-LIBORmodels . . 308 6 Continuous-TimeStochasticProcesses: DiscontinuousPaths 309 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 6.2 PoissonprocessesandPoissonrandommeasures: Definition and simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 310 6.2.1 Stochastic integrals with respect to Poissonprocesses 312 6.3 Jump-diffusions: Basics, properties, and simulation . . . . . 315 ix 6.3.1 Simulating Gauss-Poissonjump-diffusions . . . . . . . 317 6.3.2 Euler-Maruyama scheme for jump-diffusions . . . . . . 319 6.4 L´evy processes: Properties and examples . . . . . . . . . . . 320 6.4.1 Definition and properties of L´evy processes . . . . . . 320 6.4.2 Examples of L´evy processes . . . . . . . . . . . . . . . 324 6.5 Simulation of L´evy processes . . . . . . . . . . . . . . . . . . 329 6.5.1 Exact simulation and time discretization . . . . . . . . 329 6.5.2 The Euler-Maruyamascheme for L´evy processes . . . 330 6.5.3 Small jump approximation . . . . . . . . . . . . . . . 331 6.5.4 Simulation via series representation. . . . . . . . . . . 333 7 Simulating Financial Models: Discontinuous Paths 335 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 7.2 Merton’sjump-diffusionmodelandstochasticvolatilitymodels with jumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 7.2.1 Merton’s jump-diffusion setting . . . . . . . . . . . . . 335 7.2.2 Jump-diffusion with double exponential jumps . . . . 339 7.2.3 Stochastic volatility models with jumps . . . . . . . . 340 7.3 Special L´evy models and their simulation . . . . . . . . . . . 340 7.3.1 The Esscher transform . . . . . . . . . . . . . . . . . . 341 7.3.2 The hyperbolic L´evy model . . . . . . . . . . . . . . . 342 7.3.3 The variance gamma model . . . . . . . . . . . . . . . 344 7.3.4 Normal inverse Gaussian processes . . . . . . . . . . . 352 7.3.5 Further aspects of L´evy type models . . . . . . . . . . 354 8 Simulating Actuarial Models 357 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 8.2 Premium principles and risk measures . . . . . . . . . . . . . 357 8.2.1 Properties and examples of premium principles . . . . 358 8.2.2 Monte Carlo simulation of premium principles . . . . 362 8.2.3 Properties and examples of risk measures . . . . . . . 362 8.2.4 Connection between premium principles and risk measures . . . . . . . . . . . . . . . . . . . . . . . . . 365 8.2.5 Monte Carlo simulation of risk measures . . . . . . . . 366 8.3 Some applications of Monte Carlo methods in life insurance . 377 8.3.1 Mortality: Definitions and classical models . . . . . . 378 8.3.2 Dynamic mortality models. . . . . . . . . . . . . . . . 379 8.3.3 Life insurance contracts and premium calculation . . . 383 8.3.4 Pricing longevity products by Monte Carlo simulation 385 8.3.5 Premium reserves and Thiele’s differential equation. . 387 8.4 Simulating dependent risks with copulas . . . . . . . . . . . 390 8.4.1 Definition and basic properties . . . . . . . . . . . . . 390 8.4.2 Examples and simulation of copulas . . . . . . . . . . 393 8.4.3 Application in actuarial models . . . . . . . . . . . . . 402 8.5 Nonlife insurance . . . . . . . . . . . . . . . . . . . . . . . . 403

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.