Universitext W. Frank Moore Mark Rogers Sean Sather-Wagstaff Monomial Ideals and Their Decompositions Universitext Universitext Series editors Sheldon Axler San Francisco State University Carles Casacuberta Universitat de Barcelona Angus MacIntyre Queen Mary University of London Kenneth Ribet University of California, Berkeley Claude Sabbah École polytechnique, CNRS, Université Paris-Saclay, Palaiseau Endre Süli University of Oxford Wojbor A. Woyczyński Case Western Reserve University Universitext is a series of textbooks that presents material from a wide variety of mathematical disciplines at master’s level and beyond. The books, often well class-tested by their author, may have an informal, personal even experimental approachtotheirsubjectmatter.Someofthemostsuccessfulandestablishedbooks intheserieshaveevolvedthroughseveraleditions,alwaysfollowingtheevolution of teaching curricula, into very polished texts. Thus as research topics trickle down into graduate-level teaching, first textbooks written for new, cutting-edge courses may make their way into Universitext. More information about this series at http://www.springer.com/series/223 W. Frank Moore Mark Rogers (cid:129) Sean Sather-Wagstaff Monomial Ideals and Their Decompositions 123 W.Frank Moore SeanSather-Wagstaff Department ofMathematics Schoolof Mathematical andStatistical WakeForest University Sciences Winston-Salem, NC,USA Clemson University Clemson, SC,USA Mark Rogers Department ofMathematics MissouriState University Springfield,MO, USA ISSN 0172-5939 ISSN 2191-6675 (electronic) Universitext ISBN978-3-319-96874-2 ISBN978-3-319-96876-6 (eBook) https://doi.org/10.1007/978-3-319-96876-6 LibraryofCongressControlNumber:2018948828 MathematicsSubjectClassification(2010): 13-01,05E40,13-04,13F20,13F55 ©SpringerNatureSwitzerlandAG2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Dedicated to the memory of Diana Taylor, with gratitude and respect. Contents Introduction... .... .... .... ..... .... .... .... .... .... ..... .... xi Overview... .... .... .... ..... .... .... .... .... .... ..... .... xii Audience... .... .... .... ..... .... .... .... .... .... ..... .... xiii Summary of Contents. .... ..... .... .... .... .... .... ..... .... xiv Notes for the Instructor/Independent Reader. .... .... .... ..... .... xvii Possible Course Outlines... ..... .... .... .... .... .... ..... .... xviii Acknowledgments.... .... ..... .... .... .... .... .... ..... .... xxiii Part I Monomial Ideals 1 Fundamental Properties of Monomial Ideals . . . . . . . . . . . . . . . . . . 5 1.1 Monomial Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Integral Domains (optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3 Generators of Monomial Ideals. . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4 Noetherian Rings (optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.5 Exploration: Counting Monomials. . . . . . . . . . . . . . . . . . . . . . . 28 1.6 Exploration: Numbers of Generators . . . . . . . . . . . . . . . . . . . . . 31 2 Operations on Monomial Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.1 Intersections of Monomial Ideals . . . . . . . . . . . . . . . . . . . . . . . 34 2.2 Unique Factorization Domains (optional). . . . . . . . . . . . . . . . . . 40 2.3 Monomial Radicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.4 Exploration: Reduced Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.5 Colons of Monomial Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.6 Bracket Powers of Monomial Ideals . . . . . . . . . . . . . . . . . . . . . 64 2.7 Exploration: Saturation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 2.8 Exploration: Generalized Bracket Powers . . . . . . . . . . . . . . . . . 73 2.9 Exploration: Comparing Bracket Powers and Ordinary Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 vii viii Contents 3 M-Irreducible Ideals and Decompositions. . . . . . . . . . . . . . . . . . . . . 81 3.1 M-Irreducible Monomial Ideals. . . . . . . . . . . . . . . . . . . . . . . . . 81 3.2 Irreducible Ideals (optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.3 M-Irreducible Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.4 Irreducible Decompositions (optional). . . . . . . . . . . . . . . . . . . . 102 3.5 Exploration: Decompositions in Two Variables, part I . . . . . . . . 106 Part II Monomial Ideals and Other Areas 4 Connections with Combinatorics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.1 Square-Free Monomial Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.2 Graphs and Edge Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.3 Decompositions of Edge Ideals. . . . . . . . . . . . . . . . . . . . . . . . . 125 4.4 Simplicial Complexes and Stanley-Reisner Ideals . . . . . . . . . . . 131 4.5 Decompositions of Stanley-Reisner Ideals . . . . . . . . . . . . . . . . . 139 4.6 Facet Ideals and Their Decompositions . . . . . . . . . . . . . . . . . . . 146 4.7 Exploration: Alexander Duality. . . . . . . . . . . . . . . . . . . . . . . . . 152 5 Connections with Other Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 5.1 Krull Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 5.2 Vertex Covers and PMU Placement . . . . . . . . . . . . . . . . . . . . . 165 5.3 Cohen-Macaulayness and the Upper Bound Theorem. . . . . . . . . 175 5.4 Hilbert Functions and Initial Ideals . . . . . . . . . . . . . . . . . . . . . . 188 5.5 Resolutions of Monomial Ideals . . . . . . . . . . . . . . . . . . . . . . . . 199 Part III Decomposing Monomial Ideals 6 Parametric Decompositions of Monomial Ideals . . . . . . . . . . . . . . . . 221 6.1 Parameter Ideals and Parametric Decompositions. . . . . . . . . . . . 221 6.2 Corner Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 6.3 Finding Corner Elements in Two Variables. . . . . . . . . . . . . . . . 241 6.4 Finding Corner Elements in General . . . . . . . . . . . . . . . . . . . . . 246 6.5 Exploration: Decompositions in Two Variables, part II . . . . . . . 252 6.6 Exploration: Decompositions of Some Powers of Ideals. . . . . . . 253 6.7 Exploration: Macaulay Inverse Systems. . . . . . . . . . . . . . . . . . . 256 7 Computing M-Irreducible Decompositions . . . . . . . . . . . . . . . . . . . . 261 7.1 M-Irreducible Decompositions of Monomial Radicals . . . . . . . . 261 7.2 M-Irreducible Decompositions of Bracket Powers . . . . . . . . . . . 264 7.3 M-Irreducible Decompositions of Sums. . . . . . . . . . . . . . . . . . . 267 7.4 M-Irreducible Decompositions of Colon Ideals . . . . . . . . . . . . . 271 7.5 Computing General M-Irreducible Decompositions . . . . . . . . . . 276 7.6 Exploration: Edge, Stanley-Reisner, and Facet Ideals Revisited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 7.7 Exploration: Decompositions of Saturations. . . . . . . . . . . . . . . . 285 Contents ix 7.8 Exploration: Decompositions of Generalized Bracket Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 7.9 Exploration: Decompositions of Products of Monomial Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 Part IV Commutative Algebra and Macaulay2 Appendix A: Foundational Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 A.1 Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 A.2 Polynomial Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 A.3 Ideals and Generators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 A.4 Sums of Ideals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 A.5 Products and Powers of Ideals . . . . . . . . . . . . . . . . . . . . . . . . . 312 A.6 Colon Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 A.7 Radicals of Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 A.8 Quotient Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 A.9 Partial Orders and Monomial Orders. . . . . . . . . . . . . . . . . . . . . 323 A.10 Exploration: Algebraic Geometry . . . . . . . . . . . . . . . . . . . . . . . 327 Appendix B: Introduction to Macaulay2 . . . . . . . . . . . . . . . . . . . . . . . . 331 B.1 Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 B.2 Polynomial Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 B.3 Ideals and Generators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 B.4 Sums of Ideals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 B.5 Products and Powers of Ideals . . . . . . . . . . . . . . . . . . . . . . . . . 338 B.6 Colon Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 B.7 Radicals of Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 B.8 Quotient Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 B.9 Monomial Orders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 Further Reading ... .... .... ..... .... .... .... .... .... ..... .... 349 References.... .... .... .... ..... .... .... .... .... .... ..... .... 351 Index of Macaulay2 Commands, by Command ... .... .... ..... .... 355 Index of Macaulay2 Commands, by Description .. .... .... ..... .... 361 Index of Names.... .... .... ..... .... .... .... .... .... ..... .... 371 Index of Symbols... .... .... ..... .... .... .... .... .... ..... .... 373 Index of Terminology... .... ..... .... .... .... .... .... ..... .... 377 Introduction TheFundamentalTheoremofArithmeticstatesthateveryintegern>2factorsintoa productofprimenumbersinanessentiallyuniqueway.Inalgebraclass,onelearns a similar factorization result for polynomials in one variable with real number coefficients: every nonconstant polynomial factors into a product of linear poly- nomialsandirreduciblequadratic polynomials inanessentially uniqueway. These examples share some obvious common ideas. First, in each case we have a set of objects (in the first example, the set of integers; in the second example, the set of polynomials with real number coeffi- cients) that can be added, subtracted, and multiplied in pairs so that the resulting sums, differences, and products are in the same set. (We say that the sets are “closed” under these operations.) Furthermore, addition and multiplication satisfy certain rules (or axioms) that make them “nice”: they are commutative and asso- ciative, they have identities and additive inverses, and they interact coherently together via the Distributive Law. In other words, each of these sets is a commu- tative ring with identity. We do not consider division in this setting because, e.g., the quotient of two nonzero integers need not be an integer. Commutative rings with identity arise in many areas of mathematics, like combinatorics, geometry, graph theory, and number theory. Second, each example deals with factorization of certain elements into finite products of “irreducible” elements, that is, elements that cannot themselves be factored in a nontrivial manner. In general, given a commutative ring R with identity, the fact that elements can be multiplied implies that elements can be factored, even if only trivially. One way to study R is to investigate how well its factorizations behave. For instance, one can ask whether the elements of R can be factoredintoafiniteproductofirreducibleelements.(Therearenontrivialexamples where this fails.) Assuming that the elements of R can be factored into a finite product of irreducibleelements, one can askwhetherthefactorizations areunique. pffiffiffiffiffiffiffi ThefirstexampleonemightseewherethisfailsistheringZ½ (cid:2)5(cid:3)consistingofall pffiffiffiffiffiffiffi complex numbers aþb (cid:2)5 such that a and b are integers. This ring admits two xi