Monomial convergence for holomorphic functions on ℓ r 6 FrédéricBayart AndreasDefant† SunkeSchlüters‡ 1 ∗ 0 2 n a Abstract J 9 LetF be either theset of allboundedholomorphic functionsor theset 2 ofallm-homogeneouspolynomialsontheunitballofℓr. Wegiveasys- ] tematicstudyofthesetsofallu ℓ forwhichthemonomialexpansion A r ∂αf(0)uαofevery f F conve∈rges. Inspiredbyrecentresultsfromthe F α α! ∈ . generaltheoryofDirichletseries,weestablishasourmaintool,indepen- h P t dentlyinteresting,upperestimatesfortheunconditionalbasisconstants a ofspacesofpolynomialsonℓ spannedbyfinitesetsofmonomials. m r [ 1 1 Introduction v 4 4 Let X beaBanachsequencespace(i.e.,ℓ X c suchthatthecanonicalse- 1 0 1 ⊂ ⊂ quences(e )forma1-unconditionalbasis)andR X aReinhardtdomain(i.e., 8 k ⊂ 0 a nonempty open set such that any complex sequence u belongs to R when- . 1 ever thereexists z R with u z ; for instance, theopen unit ballBX of X). ∈ | |≤| | 0 Then each holomorphic (i.e., Fréchet differentiable) function f :R C has a 6 → 1 powerseriesexpansion α Nncα(n)zα oneveryfinitedimensionalsectionRn of : ∈ 0 (n) (n 1) v R, and for example fromPthe Cauchy formula we can see that cα cα+ for rXi αn ∈NNan0n⊂dNal0nl+z1. RTh,us there is a unique family (cα(f))α∈N(0N) such t=hat, for all a ∈ ∈ n f(z) c zα. α = α N(N) ∈X0 Thepowerseries c zαiscalledthemonomialexpansionof f,andc c (f) α α α α = areitsmonomialcoefficients. P ∗Laboratoire de Mathématiques Université Blaise Pascal Campus des Cézeaux, F-63177 AubièreCedex(France) †InstitutfürMathematik.UniversitätOldenburg.D-26111Oldenburg(Germany) ‡InstitutfürMathematik.UniversitätOldenburg.D-26111Oldenburg(Germany) 1 Contrary to what happens on finite dimensional domains, the monomial expansionof f does not necessarilyconvergeat every pointof R. Thisin [16] motivatedtheintroductionofthefollowingdefinition: GivenasubsetF(R)of H(R),thesetofallholomorphicfunctionsonR,wecall monF(R) z R : c (f)zα forall f F(R) α = ∈ <∞ ∈ ½ α N(N) ¾ ∈X0 ¯ ¯ ¯ ¯ thedomainofmonomialconvergencewithrespecttoF(R). Bycontinuityofaholomorphicfunction,andsincetheequalityissatisfied onR ,weknowthatforallz monF(R), n ∈ f(z) c (f)zα. α = α N(N) ∈X0 We are mostly interested in determining monF(R) when F(R) P(mℓ ) or r = H (B )for1 r ; asusualwedenoteby H (B )theBanachspaceofall bo∞undℓerdholom≤or≤ph∞icfunctions f :B C,and∞byPX(mX)itsclosedsubspace X → ofallm-homogeneouspolynomialsP (i.e.,allrestrictionsofboundedm-linear formsonXm totheirdiagonals). Thecase r 1was solvedcompletelybyLempertin[20], andthecase r = = seems fairly well-understood through the results of [6] (for more on these ∞ resultsseetheintroductionsofthesections5.1 and5.2). However, for 1 r < < ,despitetheresultsof[16],thedescriptionofmonP(mℓ )andmonH (B ) ∞ r ∞ ℓr remainsmysterious.Inthispaper,weimprovetheknowledgeonthesecases. Ofcourse, for X ℓ thefact that each sequence in ℓ bydefinitionis ab- 1 1 = solutely summable is a big advantage, and for X ℓ the crucial tool is the = ∞ Bohnenblust-Hilleinequality(aninequalityform-linearformsonℓ )together ∞ withallitsrecentimprovments.ButforX ℓ withr 1, weneedalternative r = 6= ∞ techniques. Theproblemistofindforeachu B anadditionalsummabilitycondition ∈ ℓr which guarantiesfullcontrolofallsums c (f)uα , f H (B ).Thegen- eralideaissimple. SplitthesetN(N) ofallmαultαiindicesα∈into∞auℓnrionoffinite 0 P ¯ ¯ sets Λ , and then each Λ into the disjoint¯union of¯ all its m-homogeneous n n partsΛ (i.e.,allα Λ withorder α m). Thechallengenowisasfollows: n,m n ∈ | |= Findacleverdecomposition N(N) Λ , (1) 0 = m,n m,n [ whichallowsainasenseuniformcontroloverallpossiblepartialsums c (f)uα , f H (B ), (2) α Λn,m α ∈ ∞ ℓr ∈X ¯ ¯ ¯ ¯ 2 suchthatundertheadditionalsummabilitypropertyofu B weforallfunc- ∈ ℓr tions f finallycanconcludethat c (f)uα c (f)uα . α α ≤ <∞ α N(N) n m α Λn,m ∈X0 ¯ ¯ X X ∈X ¯ ¯ ¯ ¯ ¯ ¯ InordertostudydomainsmonF(R)ofmonomialconvergence,thedecompo- sitionin(1)whichforourpurposesiscrucial,isinspiredbytheworkofKonya- gin and Queffélec from [19] on Dirichletseries (see 11), and it is based on the fundamental theorem of arithmetics. In order to handle (2), we study for ar- bitraryfiniteindex sets Λ of multiindices upperboundsof theunconditional basisconstantofthesubspaceinP(mℓ )spannedbyallmonomialszα,α Λ. r ∈ Two tools of seemingly independent interest are established. The first one is a fairly general upper estimate whenever all α Λ are m-homogeneous (i.e., ∈ α m)(Theorem3.2).Thesecondoneleadstosuchestimatesforcertainsets | |= Λ ofnonhomogeneousα s,needed toapplytheabovetechniqueofKonyagin ′ andQueffélec(Theorem4.1and4.2).Finally,wepresentournewresultsonsets of monomialconvergence for homogeneous polynomialsand bounded holo- morphic functions on ℓ (for polynomials see part (3),(4) of Theorem 5.1 and r Theorem 5.3, and for holomorphicfunctions Theorem 5.5 with its corollaries 5.6and5.7). 2 Preliminaries We usestandardnotationfrom Banach spacetheory. As usual,we denotethe conjugateexponentof1 r byr ,i.e. 1 1 1.Givenm,n Nweconsider ≤ ≤∞ ′ r+r′ = ∈ thefollowingsetsofindices M(m,n) j (j ,...,j );1 j ,...,j n {1,...,n}m 1 m 1 m = = ≤ ≤ = M(m) N© m ª = M NN = and J(m,n) j M(m,n);1 j j n 1 m = ∈ ≤ ≤···≤ ≤ J(m) © J(m,n) ª = n [ J J(m). = m [ Forindicesi,j M wedenoteby(i,j) (i ,i ,...,j ,j ,...)theconcatenationof 1 2 1 2 ∈ = i and j. An equivalence relationis defined in M(m)as follows: i j if thereis ∼ 3 apermutationσsuchthati j forallk. Wewrite i forthecardinalityof σ(k) k = | | the equivalence class [i]. Moreover, we note that for each i M(m) there is a ∈ uniquej J(m)suchthati j. ∈ ∼ Let us compare our index notation with the multi index notation usually used in the context of polynomials. There is a one-to-one relation between J(m)and Λ(m) α N(N); α ∞ α m ; =( ∈ 0 | |=i 1 i = ) X= indeed, given j, one can define α by doing α {q j r}; conversely, for r q = | | = | eachα,weconsiderjα (1,.α.1.,1,2,.α.2.,2,...,n,.α.n.,n,...).Inthesamewaywemay = identifyΛ(m,n) α Nn ; α m withJ(m,n). Notethat j m! forevery = ∈ 0 | |= | α|= α! α Λ(m).Takingthiscorrespondenceintoaccount,foreveryBanachsequence ∈ © ª space X themonomialseriesexpansionofam-homogeneouspolynomialP ∈ P(mX)canbeexpressedindifferentways(wewritec c (P)) α α = c zα c z c z z . α = j j= j1...jm j1··· jm α Λ(m) j J(m) 1 j1 ... jm ∈X ∈X ≤ X≤ ≤ Given a Banach sequence space X and some index subset J J, we write ⊂ P(JX) for the closed subspace of all holomorphic functions f H (B ) for X whichc (f) 0forallj J \J. Clearly,P(mX) P(J(m)X). If J∈ J∞isfinite, j = ∈ = ⊂ then P(JX) span z : j J , j = ∈ wherez forj (j ,...,j )standsforthemnonomialoz :u u : u ... u . For j = 1 ℓ j 7→ j = j1· · jℓ J J(m),wecall ⊂ J∗ j J(m 1); k 1, (j,k) J = ∈ − ∃ ≥ ∈ thereducedsetof J. © ª 3 Unconditionality Given a compact groupG, theSidon constantof a finiteset C of characters γ (in the dual group) is the best constant c 0, denoted by S(C), such that for ≥ everychoiceofscalarsc ,γ C,wehavethat γ ∈ c c c γ . γ γ | |≤ γX∈C °γX∈C °∞ ° ° AnimmediateconsequenceoftheCau°chy-Schw°arzinequalityisthat 1 1 S(C) C 2. ≤ ≤| | ForthecirclegroupsG T,Tn andT differentvaluesarepossible: ∞ = 4 • Awell-knownresultofRudinshowsthatforthesetC {1,z,...,zn 1}of − = charactersonG Twehave,uptoconstantsindependentofn, = S(C) pn. (3) ≍ • In[14]itwasprovedthatforeverym,n theSidonconstantofthemono- mialsC {zα:α Λ(m,n)}onG Tn,uptothemthpowerCm ofsome = ∈ = absoluteconstantC,satisfies S(C) Λ(m 1,n) 12 . (4) ≍| − | • Incontrast,areformulationofaresultofAronandGlobevnik[2,Thm1.3] showsthatforeverym theSidonconstantofthesparsesetC {zm : j = j ∈ N}fulfills S(C) 1. (5) = Let us transfer some of these results into terms of unconditional bases con- stantsofspacespolynomialsonsequencespaces. RecallthataSchauderbasis (x )of a Banach space X issaid to beunconditionalwhenever thereis a con- n stantc 0suchthat ε α x c α x foreveryx a x X and k k k k k k k k k k ≥ k k≤ k k = ∈ all choices of (ε ) C with ε 1. In this case, the best constant c is de- k k k ⊂P | | = P P notedbyχ (x ) andcalledtheunconditionalbasisconstantof(x ). Ifsucha n n constantdoesn’texist,i.e. ifthebasisisnotunconditional,wesetχ (x ) . ¡ ¢ n =∞ GivenaBanachsequencespaceX andanindexset J J,suchthattheset ⊂ ¡ ¢ C {z : j J} of all monomialsassociated with J (counted in a suitableway) j = ∈ formsanbasisofP(JX),wewrite χ P(JX) χ(C). mon = ¡ ¢ If we interpret each of these monomials z as a character on the group T , j ∞ then a straightforward calculation (using the distinguished maximum modu- lusprinciple)provesthat S(C) χ P(Jℓ ) . mon = ∞ ¡ ¢ Asimplebutusefullemmashowsthatχ P(Jℓ ) isanupperboundofall mon χ P(JX) . ∞ mon ¡ ¢ ¡ ¢ Lemma 3.1. Let X be a Banach sequence space and let J J, such that the ⊂ monomialsformabasisofP(JX). Then χ P(JX) χ P(Jℓ ) . mon mon ≤ ∞ ¡ ¢ ¡ ¢ 5 Proof. Assume χ P(Jℓ ) (otherwise there is nothing to show). For mon P P(JX) and a fixed u ∞B <de∞fineQ(w) P(wu) P(Jℓ ). Since B is a ∈ ¡ ∈ X¢ = ∈ ∞ X Reinhardtdomain,wehave Q P . Itisnowsufficienttoobservethat k k∞≤k k∞ c (P)u sup c (P)u w sup c (Q) w j j j j j j j | |= | || |= | || | Xj∈J w∈Bℓ∞Xj∈J w∈Bℓ∞Xj∈J χ P(Jℓ ) Q χ P(Jℓ ) P , mon mon ≤ ∞ k k∞≤ ∞ k k∞ ¡ ¢ ¡ ¢ theconclusion. Letusagainseesomeexamples: Given X,animmediateconsequenceof(3)is thatforP(JX span{zj;0 j n 1}wehave,uptoauniversalconstant, = 1 ≤ ≤ − ¢ χ P(JX) pn, mon ≍ ¡ ¢ andfrom(5)wemaydeducethatfor J (k, ,k);k N J(m) = ··· ∈ ⊂ χ P(JX© ) 1. ª mon = ¡ ¢ Generalizing (4) is much more complicated. In the scale of all ℓ -spaces the r results from [4] (lower estimates)and [13, 14] (upper estimates)show thatfor 1 r ≤ ≤∞ χmon P(J(m,n)ℓr) J(m 1,n) 1−min1(r,2), (6) ≍ − where meansthatth¡eleftandthe¢rig¯htsideequa¯luptothem-thpowerCm ≍ ¯ ¯ ofaconstantonlydependingonr (andneitheronm noronn). Replacing the index set J(m,n) by an arbitrary finite subset J J(m,n) ⊂ thefollowingresultisastrongimprovementandourmaintoolwithinourlater studyofsetsofmonomialconvergence. Theorem3.2. Given1 r and m 1, thereis aconstantC(m,r) 1 such ≤ ≤∞ ≥ ≥ thatforeveryn 1,everyP P(J(m,n)ℓ ),every J J(m,n),andeveryu ℓ r r ≥ ∈ ⊂ ∈ wehave cj(P) |uj|≤C(m,r)|J∗|1−min1(r,2)kukmr kPk∞, (7) j J X∈ ¯ ¯ ¯ ¯ where eme(m 1)/r if1 r 2 − C(m,r) ≤ ≤ ≤(em2(m−1)/2 if2 r . ≤ ≤∞ Inparticular,foreveryfinite J J(m) ⊂ χmon P(Jℓr) C(m,r) J∗ 1−min1(r,2). (8) ≤ | | ¡ ¢ 6 Theproofisgiveninthefollowingtwosubsections;itisdifferentforr 2and ≤ for r 2. The case r of (6) is given in [14], and it uses the hypercontrac- ≥ =∞ tiveBohnenblust-Hilleinequality. Thegeneralcase1 r from[13]needs ≤ ≤∞ sophisticatedtoolsfromlocalBanachspacetheory(asGordon-Lewisandpro- jection constants). Theseargumentsin fact only work for thewholeindex set J(m,n), and they seem to fail in full generality for subsets J of J(m,n). We hereprovideatricky,butquiteelementary,argumentwhichworksforarbitrary J;moreover,wepointoutthatevenforthespecialcase J J(m,n)weobtain = betterconstantsC(m,r)for(8)thanin[13]. From [15] we know that for each infinite dimensional Banach sequence spaceX,theBanachspaceP(mX)neverhasanunconditionalbasis.Inpartic- ular,theunconditionalbasisconstantχ P(mX) ofallmonomials(zj) mon j J(m) ∈ isnotfinite.ButletusnotethatincontrasttothisthereareX suchthatforeach ¡ ¢ m supχ P(J(m,n)X) mon <∞ n ¡ ¢ (thiscanbeeasilyshownforX ℓ ,butfollowing[15]thereareevenexamples 1 = ofthistypedifferentfromℓ ). 1 3.1 Thecaser 2 ≤ Weneedseverallemmas. ThefirstoneisaCauchyestimateandcanbefound in[7,p. 323].Forthesakeofcompletenessweincludeastreamlinedargument. Lemma3.3. Let1 r andα Nn with α m. ThenforeachP P mℓn ≤ ≤∞ ∈ 0 | |= ∈ r wehave mm 1 ¡ ¢ r c (P) P . | α |≤ αα k k∞ ³ ´ Inparticular,foreachj J(m,n)wehavethat ∈ m 1 cj(P) e r j r P . | |≤ | | k k∞ Proof. Defineu =m−1/r(α11/r,...,α1n/r)∈Bℓnr. ThenbytheCauchyintegralfor- mulaforeachP P mℓn ∈ r ¡ ¢ 1 P(z) c (P) ... dz. α = (2πi)n zαz ...z Z|zn|=un Z|z1|=u1 1 n Henceweobtain 1 mm 1 r c (P) P P , | α |≤ uα k k∞= αα k k∞ | | ³ ´ theconclusion. Forthesecondinequalitynotefirstthat mm r1 em/r m! 1/r, αα ≤ α! andrecallthatifweassociatetojthemultiindexα,then³m! ´j . ³ ´ α! =| | 7 Corollary3.4. ConsiderthelinearoperatorQ L ℓn,P(m 1ℓn) definedby ∈ r − r n ¡ ¢ Q(z,w) b z w , (j,k) j k =j J(m 1,n)Ãk 1 ! ∈ X− X= wherez,w ℓn. Thenforanyj J(m 1,n), ∈ r ∈ − n 1/r′ b(j,k) r′ emr−1 j 1/r Q . à | | ! ≤ | | k k∞ k 1 X= Proof. Let us fix w ∈ Bℓnr. Then Q(·,w) ∈ P(m−1ℓnr). Thus, by the preceding lemmaforanyj J(m 1,n), ∈ − n b(j,k)wk emr−1 j 1/r sup Q(z,w) emr−1 j 1/r Q . ¯¯kX=1 ¯¯≤ | | z∈Bℓnr | |≤ | | k k∞ ¯ ¯ Wenowta¯¯kethesupr¯¯emumoverallpossiblew ∈Bℓnr. Lemma3.5. LetP P(mℓn). Thenforanyj J(m 1,n) ∈ r ∈ − n 1/r′ c(j,k)(P)r′ me1+mr−1 j 1/r P . à | | ! ≤ | | k k∞ k jm 1 =X− Proof. Let A:ℓn ... ℓn Cbethesymmetricm-linearformassociatedtoP, r × × r → A(z(1),...,z(m)) a (A)z(1) z(m); = i i1 ··· im i M(m,n) ∈ X inparticular,foreachj J(m,n)wehavea (A) cj(P).Forz,w ℓn definethe ∈ j = j ∈ r linearoperator || Q(z,w)=A(z,...,z,w)∈L ℓnr,P(m−1ℓnr) ; thenasimplecalculationproves ¡ ¢ Q(z,w) a (A)z z w = i i1··· im 1 im i M(m,n) − ∈ X n a (A)z z w = (i,k) i1··· im 1 k i M(m 1,n)k 1 − ∈ X− X= n a (A)z z w = (i,k) i1··· im 1 k j J(m 1,n)i [j]k 1 − ∈ X− X∈ X= n a (A)z z w = j J(m 1,n)k 1Ãi [j] (i,k) i1··· im−1! k ∈ X− X= X∈ n a (A)j z z w . = (j,k) | | j1··· jm 1 k j J(m 1,n)k 1 − ∈ X− X= ¡ ¢ 8 Nownotethatforeveryj J(m 1,n)wehave (j,k) m j ,andhencebythe ∈ − | |≤ | | precedingcorollaryforsuchj 1/r′ 1/r′ c (P) r′ a (A)(j,k) r′ (j,k) (j,k) à ! =à | | ! k:jm 1 k k:jm 1 k X− ≤ ¯ ¯ X− ≤ ¯ ¯ ¯ ¯ n ¯ 1/r¯′ m a(j,k)(A)j r′ memr−1 j 1/r Q . ≤ à | | ! ≤ | | k k∞ k 1 X= ¯ ¯ ¯ ¯ Finally,byHarris’polarizationformulaweknowthat Q e P ,andhence k k∞≤ k k∞ weobtainthedesiredconclusion. Nowwearereadytogivethe ProofofTheorem3.2for1 r 2. Take P P(J(m,n)ℓ ), J J(m,n) and u r ≤ ≤ ∈ ⊂ ∈ ℓ . Then,byLemma3.5,foranyj J , r ∗ ∈ 1/r′ n 1/r′ c(j,k)(P)r′ c(j,k)(P)r′ me1+mr−1 j 1/r P . à | | ! ≤à | | ! ≤ | | k k∞ k:(j,k) J k jm 1 X∈ =X− NowbyHölder’sinequality(twotimes)andthemultinomialformulawehave c (P) u c u u j j (j,k) j k | || | = | || || | j J j J k:(j,k) J X∈ X∈ ∗ X∈ 1/r′ 1/r u c r′ u r j (j,k) k ≤ j J | | Ãk:(j,k) J| | ! à k | | ! X∈ ∗ X∈ X me1+mr−1 j 1/r uj u r P ≤ | | | |k k k k∞ j J X∈ ∗ 1/r 1/r′ me1+mr−1 j uj r 1 u r P ≤ Ãj J | || | ! Ãj J ! k k k k∞ X∈ ∗ X∈ ∗ 1/r 1/r′ me1+mr−1 j uj r 1 u r P ≤ Ãj∈J(Xm−1,n)| || | ! ÃjX∈J∗ ! k k k k∞ = me1+mr−1|J∗|1−1rkukmr kPk∞. In orderto deduce(8), notethatfor everyfinite J J(m)thereis n such that ⊂ J J(m,n). Then every P P(Jℓ ) can be considered as a polynomial in r ⊂ ∈ P(J(m,n)ℓ )withequalnorm,whichimpliestheconclusion. r 9 3.2 Thecaser 2 ≥ Note first that the simple argument from the proof of Lemma 3.1 shows that we onlyhaveto deal with thecase r . For r we need anotherlemma =∞ =∞ whichsubstitutestheargument(byCauchy’sestimates)fromLemma3.3. Itis animprovementofParseval’sidentity,anditsproofcanbefoundin[6,Lemma 2.5]. Lemma3.6. LetP P(J(m,n)ℓ ). Then ∈ ∞ 1/2 n c(j,k)(P)2 em2m2−1 P . | | ≤ k k∞ k 1 j J(m 1,n) X= ∈ X− jm−1≤k Wearenowreadyforthe ProofofTheorem3.2forr . LetP P(J(m,n)ℓ ). Then,foranyu B ,by ℓ =∞ ∈ ∞ ∈ ∞ theCauchy-SchwarzinequalityandtheprecedingLemma3.6wehave n c (P) u c j j (j,k) | || | ≤ | | Xj∈J kX=1 jX∈J∗ (j,k) J ∈ 1/2 n c(j,k) 2 {j J∗:(j,k) J} 1/2 ≤ | | ∈ ∈ kX=1 jX∈J∗ ¯ ¯ (j,k) J ∈ ¯ ¯ 1/2 n c(j,k) 2 J∗ 1/2 ≤ | | | | k 1 j J(m 1,n) X= ∈ X− em2m2−j1m−J1∗≤k1/2 P . ≤ | | k k∞ For the second statement, see again the argument from the proof in the case 1 r 2. ThisfinallycompletestheproofofTheorem3.2. ≤ ≤ Remark3.7. It isnaturaltoaskfor lower boundsofχ P(Jℓ ) using J or mon r | | J . For the whole set of m-homogeneous polynomials, this has been done | ∗| ¡ ¢ in [10] for r 2 and in [4] for 1 r 2. Using the Kahane-Salem-Zygmund ≥ ≤ ≤ inequality,wecangivesuchalowerboundatleastforthecaser . Indeed, =∞ 10