Monoidal Functors, Species and Hopf Algebras Marcelo Aguiar Swapneel Mahajan Department of Mathematics Texas A&M University College Station, TX 77843-3368 USA E-mail address: [email protected] URL: http://www.math.tamu.edu/~maguiar Department of Mathematics Indian Institute of Technology Mumbai Powai, Mumbai 400 076 India E-mail address: [email protected] URL: http://www.math.iitb.ac.in/~swapneel 2010 Mathematics Subject Classification. Primary 05A30, 16T30,18D10, 18D35, 20B30, 81R50; Secondary 05A18, 05B35, 05C25, 05E05,05E45,06A11, 06A15, 16T25, 18D05, 18D20, 18D25, 18D50, 18G30, 18G35,20F55, 51E24, 81S05 Key words and phrases. bilax monoidal functor; Fock functor; Hopf algebra; Hopf monoid; monoidal category; 2-monoidal category; operad; species; symmetric group; symmetric functions Contents List of Tables ix List of Figures xi Forewordby Kenneth Brown and Stephen Chase xiii Forewordby Andr´e Joyal xv Introduction xxi Acknowledgements li Part I. Monoidal Categories 1 Chapter 1. Monoidal Categories 3 1.1. Braided monoidal categories 3 1.2. Hopf monoids 7 1.3. The internal Hom functor 16 1.4. Coherence 17 Chapter 2. Graded Vector Spaces 21 2.1. Graded vector spaces 21 2.2. The Schubert statistic 26 2.3. q-Hopf algebras 34 2.4. Multigraded vector spaces and Q-Hopf algebras 39 2.5. The norm map 42 2.6. The tensor algebra and its relatives 45 2.7. Chain complexes 51 2.8. Graded vector spaces with creation-annihilation operators 55 2.9. N-complexes 56 Chapter 3. Monoidal Functors 61 3.1. Bilax monoidal functors 61 3.2. Examples of bilax monoidal functors 67 3.3. Composites of bilax monoidal functors 72 3.4. A comparison of bimonoids and bilax monoidal functors 75 3.5. Normal bilax monoidal functors 80 3.6. Bistrong monoidal functors 84 3.7. Hopf lax monoidal functors 88 3.8. An alternative description of bilax monoidal functors 97 3.9. Adjunctions of monoidal functors 100 3.10. The contragredientconstruction 107 iii iv CONTENTS 3.11. The image of a morphism of bilax monoidal functors 111 Chapter 4. Operad Lax Monoidal Functors 119 4.1. Other types of monoids and monoidal functors 119 4.2. Types of monoid: the general case 124 4.3. Types of monoidal functor: the general case 127 4.4. Composites of monoidal functors and transformation of monoids 131 Chapter 5. Bilax Monoidal Functors in Homological Algebra 137 5.1. The simplicial category and simplicial modules 138 5.2. Topological spaces and simplicial sets 141 5.3. Alexander–Whitney and Eilenberg–Zilber 142 5.4. The chain complex functors 145 5.5. The (co)homology functors. Cup and Pontrjaginproducts 150 5.6. A q-analogue of the chain complex functor 154 Chapter 6. 2-Monoidal Categories 161 6.1. The basic theory of 2-monoidal categories 162 6.2. Coherence 167 6.3. Braided monoidal categories as 2-monoidal categories 170 6.4. Examples of 2-monoidal categories 172 6.5. Bimonoids and double (co)monoids 178 6.6. Modules and comodules over a bimonoid 184 6.7. Examples of bimonoids and double monoids 185 6.8. Bilax and double (co)lax monoidal functors 189 6.9. Examples of bilax and double (co)lax monoidal functors 195 6.10. The free monoid functor as a bilax monoidal functor 198 6.11. 2-monoidal categories viewed as pseudomonoids 199 6.12. Contragredience for 2-monoidal categories 203 Chapter 7. Higher Monoidal Categories 207 7.1. 3-monoidal categories 207 7.2. Symmetric monoidal categories as 3-monoidal categories 212 7.3. Constructions of 3-monoidalcategories 213 7.4. Monoids in 3-monoidal categories 216 7.5. Monoidal functors between 3-monoidal categories 217 7.6. Higher monoidal categories 220 7.7. Monoids in higher monoidal categories 222 7.8. Monoidal functors between higher monoidal categories 224 7.9. Higher monoidal categories viewed as pseudomonoids 228 7.10. Contragredience for higher monoidal categories 230 Part II. Hopf Monoids in Species 233 Chapter 8. Monoidal Structures on Species 235 8.1. Species 235 8.2. Monoids and comonoids in species 239 8.3. Bimonoids and Hopf monoids in species 243 8.4. Antipode formulas for connected bimonoids 247 8.5. The simplest Hopf monoids 249 CONTENTS v 8.6. Duality in species 252 8.7. Set species and linearized species 254 8.8. Bimonoids as bilax monoidal functors 262 8.9. Connected and positive species 265 8.10. Primitive elements and the coradical filtration 269 8.11. Derivatives and internal Hom 270 8.12. Species with up-down operators 272 8.13. The Hadamard product and an interchange law on species 275 Chapter 9. Deformations of Hopf Monoids 283 9.1. q-Hopf monoids 283 9.2. Connected 0-bimonoids 284 9.3. The signed exponential species 287 9.4. The Hadamard and signature functors 288 9.5. The q-Hopf monoids of linear orders 290 9.6. Cohomology of linearized comonoids in species 294 9.7. The Schubert and descent cocycles 301 Chapter 10. The Coxeter Complex of Type A 305 10.1. Partitions and compositions 306 10.2. Faces, chambers, flats and cones 311 10.3. The Coxeter complex of type A 314 10.4. Tits projection maps and the monoid of faces 316 10.5. The gallery metric and the gate property 320 10.6. Shuffle permutations 323 10.7. The descent and global descent maps 324 10.8. The action of faces on chambers and the descent algebra 328 10.9. Directed faces and directed flats 330 10.10. The dimonoid of directed faces 335 10.11. The break and join maps 337 10.12. The weighted distance function 341 10.13. The Schubert cocycle and the gallery metric 346 10.14. A bilinear form on chambers. Varchenko’s result 353 10.15. Bilinear forms on directed faces and faces 357 Chapter 11. Universal Constructions of Hopf Monoids 363 11.1. The underlying species for the universal objects 364 11.2. The free monoid and the free Hopf monoid 365 11.3. The free commutative Hopf monoid 370 11.4. The cofree comonoid and the cofree Hopf monoid 372 11.5. The cofree cocommutative Hopf monoid 377 11.6. The norm transformation and the abelianization 379 11.7. The deformed free and cofree Hopf monoids 382 11.8. Antipode formulas 388 11.9. Primitive elements and related functors 393 11.10. The free and cofree 0-Hopf monoids 397 Chapter 12. Hopf Monoids from Geometry 401 12.1. Bases 402 12.2. The q-Hopf monoid of chambers 403 vi CONTENTS 12.3. The q-Hopf monoid of pairs of chambers 406 12.4. The q-Hopf monoids of faces 414 12.5. The q-Hopf monoids of directed faces 419 12.6. The Hopf monoids of flats 426 12.7. The Hopf monoids of directed flats 429 12.8. Relating the Hopf monoids 433 Chapter 13. Hopf Monoids from Combinatorics 443 13.1. Posets 443 13.2. Simple graphs 450 13.3. Rooted trees and forests 452 13.4. Relations 460 13.5. Combinatorics and geometry 463 13.6. Set-graded posets 465 13.7. Set-balanced simplicial complexes 473 13.8. Closures, matroids, convex geometries, and topologies 477 13.9. The Birkhoff transform 481 Chapter 14. Hopf Monoids in Colored Species 487 14.1. Colored species 487 14.2. Q-Hopf monoids 490 14.3. The colored exponential species 494 14.4. The colored Hadamard and signature functors 496 14.5. The colored linear order species 499 14.6. The colored free and cofree Hopf monoids 502 14.7. Colored Hopf monoids from geometry 509 Part III. Fock Functors 517 Chapter 15. From Species to Graded Vector Spaces 519 15.1. The Fock bilax monoidal functors 519 15.2. From Hopf monoids to Hopf algebras: Stover’s constructions 526 15.3. Values of Fock functors on particular Hopf monoids 528 15.4. The norm transformation between full Fock functors 532 15.5. The Fock functors and commutativity 536 15.6. The Fock functors and primitive elements 540 15.7. The full Fock functors and dendriform algebras 543 Chapter 16. Deformations of Fock Functors 547 16.1. Deformations of the full Fock functors 548 16.2. The deformed norm transformation 552 16.3. The fermionic and anyonic Fock bilax monoidal functors 555 16.4. The deformed full Fock functor and commutativity 558 16.5. Deformations of Hopf algebras arising from species 561 Chapter 17. From Hopf Monoids to Hopf Algebras: Examples 565 17.1. Shifting and standardization 566 17.2. The Hopf algebra of permutations 568 17.3. Quasi-symmetric and noncommutative symmetric functions 571 17.4. Symmetric functions 575 CONTENTS vii 17.5. Combinatorial Hopf algebras 577 Chapter 18. Adjoints of the Fock Functors 581 18.1. The right adjoint of K 582 18.2. The right adjoint of K 586 18.3. The left adjoint of K 587 18.4. Nonexistence of certain adjoints 590 18.5. The right adjoints of K and K on comonoids 591 Chapter 19. Decorated Fock Functors and Creation-Annihilation 599 19.1. Decorated Fock functors 600 19.2. The decorated norm transformation 605 19.3. Classical creation-annihilationoperators 607 19.4. The generalized Fock spaces of Gu¸t˘a and Maassen 610 19.5. Creation-annihilation on generalized bosonic Fock spaces 616 19.6. Species with balanced operators 620 19.7. Deformations of decorated Fock functors 625 19.8. Deformations related to up-down and creation-annihilation 627 19.9. Yang–Baxter deformations of decorated Fock functors 631 Chapter 20. Colored Fock Functors 635 20.1. The colored Fock functors 636 20.2. The colored norm transformation and the anyonic Fock functor 642 20.3. The colored full Fock functor and commutativity 646 20.4. Colors and decorations 651 20.5. Quantum objects 652 Appendices 655 Appendix A. Categorical Preliminaries 657 A.1. Products, coproducts and biproducts 657 A.2. Adjunction and equivalence 659 A.3. Colimits of functors 661 A.4. Kan extensions 665 A.5. Comma categories 667 Appendix B. Operads 669 B.1. Positive operads 669 B.2. Positive cooperads 675 B.3. Hereditary species. Schmitt’s construction of positive cooperads 678 B.4. General operads and cooperads 680 B.5. Modules over operads and monoids in species 689 B.6. Hopf operads 691 B.7. Nonsymmetric operads 695 Appendix C. Pseudomonoids and the Looping Principle 697 C.1. 2-categories and bicategories 697 C.2. Pseudomonoids 701 C.3. Enrichment 706 C.4. The looping principle 708 viii CONTENTS C.5. Bipartite graphs, spans, and bimodules 710 Appendix D. Monoids and the Simplicial Category 713 D.1. Mac Lane’s simplicial category 713 D.2. Monoids, lax monoids, and homotopy monoids 715 D.3. Lax monoidal categories 717 D.4. The convolution homotopy monoid 720 References 725 Bibliography 727 Notation Index 741 Author Index 763 Subject Index 767 List of Tables 1.1 Categories of “monoids” in monoidal categories. 7 2.1 Monoidal structures on graded vector spaces. 22 2.2 Categories of “monoids” in (graded) vector spaces. 24 2.3 Monoidal categories related to graded vector spaces. 57 3.1 Bilax monoidal functors. 68 3.2 Bistrong monoidal functors. 68 3.3 Morphisms between bilax monoidal functors. 69 3.4 Self-dual functors. 111 3.5 Self-dual natural transformations. 111 4.1 Operad-monoids and familiar types of monoids. 127 4.2 Operad-lax functors and familiar types of functors. 130 5.1 Monoidal categories related to k-modules. 138 5.2 Simplicial objects in various categories. 139 6.1 Coherence for 2-monoidal categories. 167 6.2 Categories of different types of monoids. 183 6.3 2-categories related to Cat. 200 6.4 More 2-categories related to Cat. 203 8.1 Monoidal structures on species. 238 8.2 Categories of (co)monoids in species. 240 8.3 Categories of bimonoids in species. 243 11.1 Universal objects. 363 11.2 Universal objects. Deformed and signed versions. 364 12.1 Hopf monoids. 401 12.2 Universal maps. 438 13.1 Hopf monoids from combinatorics. 444 13.2 Hopf monoids from relations. 460 13.3 Combinatorics and geometry. 463 13.4 Analogies: from numbers to sets. 473 14.1 Categories of colored (co, bi, Hopf) monoids in species. 490 14.2 Universal Q-objects. 502 ix x LIST OF TABLES 14.3 Q-Hopf monoids. 510 15.1 The Fock functors. 519 16.1 The deformed Fock functors. 547 18.1 Adjoints of K and K. 581 18.2 Adjoints of K∨ and K∨. 581 19.1 Decorated Fock functors. 599 19.2 Fock spaces. 600 19.3 Categories with +1 and −1 operators. 610 20.1 Colored Fock functors. 635 C.1 Pseudomonoids in various monoidal 2-categories. 706