ebook img

Monoidal categories enriched in braided monoidal categories PDF

0.87 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Monoidal categories enriched in braided monoidal categories

MONOIDAL CATEGORIES ENRICHED IN BRAIDED MONOIDAL CATEGORIES SCOTTMORRISONANDDAVIDPENNEYS Abstract. WeintroducethenotionofamonoidalcategoryenrichedinabraidedmonoidalcategoryV. Wesetupthebasictheory,andproveaclassificationresultintermsofbraidedoplaxmonoidalfunctorsto theDrinfeldcenterofsomemonoidalcategoryT. 7 1 Eventhebasictheoryisinteresting;itsharesmanycharacteristicswiththetheoryofmonoidalcategories 0 enrichedinasymmetricmonoidalcategory,butlackssomefeatures.Ofparticularnote,thereisnocartesian 2 productofbraided-enrichedcategories,andthenaturaltransformationsdonotforma2-category,butrather n satisfyabraidedinterchangerelation. a Strikingly,ourclassificationisslightlymoregeneralthanwhatonemighthaveanticipatedintermsof J strongmonoidalfunctorsV →Z(T).Wewouldliketounderstandthisfurther;inafuturepaperweshow 3 thatthefunctorisstrongifandonlyiftheenrichedcategoryis‘complete’inacertainsense.Neverthelessit remainstounderstandwhatnon-completeenrichedcategoriesmaylooklike. ] T Oneshouldthinkofourconstructionasageneralizationofde-equivariantization,whichtakesastrong C monoidalfunctorRep(G) → Z(T) forsomefinitegroupG andamonoidalcategoryT,andproducesa newmonoidalcategoryT .Inoursetting,givenanybraidedoplaxmonoidalfunctorV →Z(T),forany . //G h braidedV,weproduceT//V:thisisnotusuallyan‘honest’monoidalcategory,butisinsteadV-enriched. t a IfV hasabraidedlaxmonoidalfunctortoVec,wecanusethistoreducetheenrichmenttoVec,andthis m recoversde-equivariantizationasaspecialcase. [ 1 v 7 1. Introduction 6 5 Whilethesymmetriesofclassicalmathematicalobjectsformgroups,thesymmetriesof‘quantum’ 0 mathematical objects such as subfactors and quantum groups form more general objects which are 0 . best axiomatized as tensor categories. In turn, tensor categories have connections to many branches 1 0 ofmathematics,includingrepresentationtheory,topologicalandconformalfieldtheory,andquantum 7 information. 1 Early in the study of monoidal categories, Eilenberg and Kelly defined the notion of a category : v enrichedinagivenmonoidalcategoryV [EK66](seealso[Kel05]). Anordinarycategoryhasobjectsand i X homsets,whileaV-enrichedcategory C hasobjects,andforeverya,b ∈ C,anassociatedhomobject r C(a →b) ∈ V. TheV-enrichedcategoryalsocomeswithdistinguishedidentityelementsj ∈ V(1 → a c V C(c →c)) foreveryc ∈ C, and acompositionmorphism−◦ − : C(a →b)C(b →c) → C(a →c) for C everya,b,c ∈ C whichmustsatisfycertaincompatibilityandassociativityaxioms. Fromthisperspective, wemaythinkofanordinarycategoryasenrichedinthemonoidalcategorySet,andalinearcategoryas enrichedinthemonoidalcategoryVec. Braided monoidal categories were introduced in [JS93]. They play an essential role as algebraic ingredientsin3-dimensionalquantumtopology. Thisarticleintroducesthenotionofamonoidalcategory enriched in a braided monoidal category. Linear monoidal categories are of course the case when the enrichingcategoryV = Vec. ThespecialcasewhentheenrichingcategoryV = sVechasreceivedsome recentattention[BE16;Ush16;BGHNPR16]. Wewillexpandmoreonrelatedworkin§1.1below. Webelievethenotionofamonoidalcategoryenrichedinasymmetricclosedmonoidalcategoryis well-knowntoexpertsinthefield. However,thefactthattheenrichingcategoryneedonlybebraided, notnecessarilysymmetric,hasnotbeenpursued. Themaindifficultyindefiningthemonoidalstructure 1 ofaV-monoidalcategoryistheexchangerelationfromanordinarymonoidalcategory. If f ∈ C(a →b), 1 f ∈ C(b →c),д ∈ C(d →e),andд ∈ C(e → f),wehave 2 1 2 (f ⊗д ) ◦ (f ⊗д ) = (f ◦ f ) ⊗ (д ◦д ). 1 1 2 2 1 2 1 2 Throughoutthisarticle,wechoosetoreadcompositionlefttorightsothatwedonotneedtochangethe orderofobjects: thatis,compositionisamap C(a →b)C(b →c) → C(a →c). Indeed,weseethetwo morphismsд and f are transposed in the above relation, which tells us that the enriching monoidal 1 2 categoryshouldbebraided. Asenrichedcategoriesdonothavemorphisms,butratherhomobjects,we replacetheordinaryexchangerelationwiththefollowingbraidedinterchangerelation,whichweexpress usingstringdiagramsformorphismsinV: C(ad →cf) C(ad →cf) −◦− −⊗− C(ad →be) C(be →cf) C(a→c) C(d → f) (1.1) = . −⊗− −⊗− −◦− −◦− C(a→b) C(d →e) C(b→c) C(e → f) C(a→b) C(d →e) C(b→c) C(e → f) WereferthereadertoSection2fortheformaldefinitionofa(strict)V-monoidalcategory. In this article, we classify monoidal categories enriched in V in terms of braided oplax monoidal functorsfromV totheDrinfeldcenterZ(T) ofanordinarymonoidalcategory T. (TheDrinfeldcenter wasintroducedin[JS91b].) Recallthatafunctor F isoplaxmonoidal ifthereisafamilyofmorphisms µ : F (uv) → F (u)F (v), which need not be isomorphisms, but must merely satisfy naturality and u,v associativity conditions. We call F braided oplax monoidal if µ also intertwines the braidings (see Proposition5.4). Ourmainresultis: Theorem1.1. LetV beabraidedmonoidalcategory. Thereisabijectivecorrespondence RigidV-monoidalcategories  Pairs(T,FZ)withT arigidmonoidalcategory C,suchthatx (cid:55)→ C(1C →x)  (cid:27) and FZ : V →Z(T) braidedoplaxmonoidal,. admitsaleftadjoint  suchthat F := FZ ◦R admitsarightadjoint  Here,R :Z(T) → T istheforgetfulfunctor,andweusethesuperscripton FZ todistinguishitfrom F : V → T. ThenotionofrigidityforV-monoidalcategoriesisintroducedinSection2.7. Onecoulddressthistheoremupasanequivalenceof2-categories,butwedonotpursuethishere. WealsoworkwithastrictnotionofV-monoidalcategoryforconvenience. Theorem1.1thusgivesusapowerfultooltoconstructV-monoidalcategories. Someexamplesof strongmonoidalfunctors FZ : V →Z(T) asaboveareexploredindetailin[HPT16a,§3.3]. Additional examples of strong monoidal functors include the presence of a full copy of Fib insideZ(Ad(E )) (by 8 [BEK01,Cor.4.9],seealso[Edi17])andafullcopyofAd(SU(3) ) insideZ(Ad(4442)) (usingthemodular 3 data from [GI15], and the classification from [Bru16]). These examples seem very interesting, and we lookforwardtostudyingthemindetail. ForanybraidedV,thereisanuninterestingbraidedoplaxmonoidalfunctorλZ : V →Z(Vec) = Vec, obtained as a left adjoint of the strong monoidal inclusion Vec → V. Under the correspondence, this justinterprets C as‘triviallyenriched’inV: thatis,themorphismobjectsoftheresultingV-monoidal categoryarestilljustvectorspaces,butthoughtofasmultiplesoftheidentityobjectinV. 2 To proceed from left to right in Theorem 1.1, from a V-monoidal category C we first extract an ordinary monoidal category CV (enriched in Vec) by replacing each Hom object C(a → b) with the vectorspaceV(1 → C(a →b)). (SeeSection3formoredetailson CV.)1 Wechosethenotation CV to hintattheideaoftakingfixedpoints,akintoequivariantization. Inparticular,if C isamonoidalcategory enrichedinthesymmetricmonoidalcategoryRep(G),forG afinitegroup,thisjustmeansthatthereisan actionofG onthemorphismsofC,andCRep(G) isthesubcategoryofG-invariantmorphisms. Wecontruct the functor F : V → T in Section 4, and show that it lifts to the centre, giving FZ : V → Z(T), in Section5. To pass from right to left, we use the right adjoint of F together with rigidity to define the hom objects of the V-enriched category T . The category T has the same objects as T, and the hom //F //F objectsaredeterminedbythenaturalisomorphisms V(v → T (a →b)) (cid:27) T (aF (v) →b). //F WedescribethisconstructioninfulldetailinSection6.1. InthecasethatV issemisimple,wegetamore explicitdescriptionby (cid:77) T (a →b) (cid:27) T (aF (v ) →b)v . //F i i v simple i ThenotationT ismeanttoevokethefeelingthattheV-monoidalcategoryissometypeofquotient //F of T by F, akin to de-equivariantization. The usual process of de-equivariantisation begins with a Tannakiansubcategory,thatisacopyofRep(G),forG afinitegroup,insideZ(T),for T somemonoidal category. Thiscanbeviewedasafullyfaithfulbraidedstrongmonoidalfunctor F : Rep(G) → Z(T). Wecanfactorde-equivariantisationintotwosteps: firstapplyingourmaintheoremtoobtaintheRep(G)- monoidalcategory T ,andsecondapplyingthethefibrefunctor(theunderlyingvectorspace)toeach //F Homspace. Inthissenseourconstructionisageneralizationofde-equivariantization,althoughwhenwe ‘quotientout’byV insideZ(T),thereisingeneralnosubsequent‘underlyingvectorspace’fortheHom objectsinV. 1.1. Relatedwork. Asmentionedearlier,wehaveseenrecentinterestinmonoidalcategoriesenriched in V = sVec. Brundan and Ellis defined a super tensor category in [BE16] (see also [Müg13, §6]), and Usherworkedoutmanybasicpropertiesin[Ush16]. Usheralsoindicatedsomeinterestingexamples(his Example6.9)whichwereearlierannouncedbyWalkerinthelanguageofspinplanaralgebras. Recently, [BGHNPR16]definesthenotionofafermionicmodulartensorcategoryasapre-modulartensorcategory whoseMügercenterissVec. Thislatterconditionhasalsobeencalled‘slightlydegenerate’in[DNO13]. Thearticle[BGHNPR16]definesaproceduresimilartode-equivariantizationwhichproducessupertensor categoriesfromfermionicmodulartensorcategories. WewouldliketoacknowledgeexplicitlytheworkofKevinWalkeronenrichmentfor2-categories andhighercategories;althoughmuchofthisisunpublished,weandothersinthefieldhavelearntagreat dealfromhisideas,disseminatedinnotes,conversations,andseminars. WealsopointoutthatrecentworkofHenriques,Penneys,andTener[HPT16a]introducesthenotion of an anchored planar algebra internal to a braided pivotal tensor category, and show that these are equivalent to braided pivotal strong (not merely oplax) monoidal functors FZ : V → Z(T) for some pivotaltensorcategory T suchthat F = FZ ◦R admitsarightadjoint. Thefunctor FZ endows T with 1Thisisaspecialcaseofamoregeneralconstruction:givenabraidedlax monoidalfunctorF :V →W,wecanturn aV-monoidalcategoryintoaW-monoidalcategorybyapplyingF toeachoftheHomobjects.SeeSectionA.1formore detailsonthisconstruction.TheconstructionofCV usesthebraidedlaxmonoidalfunctorV(1V →−). 3 the structure of a module tensor category for V as studied in [HPT16b]. See also [JL16] for the related notionofaparaplanaralgebra. Inasimilarvein,ifweinterpretapivotalbraidedtensorcategoryasadisklike3-category,onecan obtainananalogousclassificationforitsdisklikemodules. Inaconcurrentarticle,MorrisonandWalker studysupertensorcategoriesfromthepointofviewofSpin-disklike2-categories,inthesenseof[MW12]. Thatarticlewillalsoincludemanyexamplesofcategorieswithobjectsofsmalldimension. Also connected to this theorem is the MathOverflow question [MO:51783] which discusses the constructionofV-enrichedmonoidalcategorieswhenV issymmetricandclosedfrombraidedstrong monoidalfunctorstotheDrinfeldcentersofmonoidalcategories. Theactivitytherereinforcesourbelief thatmonoidalcategoriesenrichedinsymmetricclosedmonoidalcategoriesareprobablyknowntoexperts. Interestingly,ourtheoremonlyrequiresthebraidedcentralfunctorbeoplaxmonoidal,andnotstrong monoidal. Weonlyneedanoplaxfunctortopassfromrighttoleft,andallwerecoverwhenpassingfrom lefttorightistheoplaxstructure. Alltheexamplesweknowaboutatthispoint,however,areeitheractuallystrongmonoidalfunctors, or left adjoints of strong monoidal functors (e.g. the ‘trivially enriched’ examples discussed above). It wouldbeveryinterestingtohave‘genuinely’oplaxexamples. 1.2. Future research. In a subsequent paper, we will characterize strong monoidality of F : V → Z(T) in terms of V-completeness of C. A V-monoidal category C is V-complete if there is a V- (cid:68) (cid:68) monoidalfunctorV → C,whereV istheself-enrichment ofV describedin§2.3. Thisistheappropriate generalisationof Π-completenessintroducedin[Ush16]forsupertensorcategories,andistheanalog of C being tensored over V in the sense of [Kel05]. We will explore V-completeness of V-monoidal categories in a followup article. In particular, we will prove that under the bijective correspondence given in Theorem 1.1, V-complete fusion categories correspond to braided strong monoidal functors V →Z(T) forsomerigidmonoidalcategory T. Moreover, we will discuss the V-completion of a V-monoidal category C, which generalises the Π-envelopeintroducedin[BE16]forsuper-tensorcategories. WewillprovethataV-monoidalcategory C isV-completeifandonlyifitisV-equivalenttoitsV-completion. It would be interesting to see if one could weaken the rigidity assumption in Theorem 1.1 to the assumptionthatthemonoidalcategoriesaremerelyclosed. (Forexample,thiscouldhopefullyimprovethe proofofLemma4.6below,whichappearsinAppendixB.)Asweuserigidityforvariousotherpurposes, andas[HPT16b;HPT16a]usespivotalcategories,wearecontenttoremainintherigidworldfornow. In another direction, it seems that we use the fact that the braiding in V has an inverse rather infrequently. Perhapsitispossibletogeneralisethesettingthroughouttomonoidalcategoriesenriched inacategoryV equippedwithalaxbraidinguv →vu asin[DS07;DPS07]. Fornow,however,wehave noapplicationofsuchageneralisation,sowehavenotpursuedit. 2. Basicnotions SupposeV isamonoidalcategory. WesuppressallunitorsandassociatorsinV toeasethenotation. Tensorproductsareindicatedbyjuxtaposition,thatis,omittingall ⊗-symbols,whileallcompositionsare writtenexplicitlywith◦. Wewritecompositionleft-to-rightthroughout. Recallfrom[Kel05]thataV-enrichedcategoryC associatestoeachpaira,b ∈ C ahomobjectC(a → b) ∈ V. For eacha ∈ C, there is a distinguished identity element j ∈ V(1 → C(a → a). For each a V a,b,c ∈ C,thereisadistinguishedcompositionmorphism−◦ − ∈ V(C(a →b)C(b →c) → C(a →c)). C Thesedatamustsatisfythefollowingtwoaxioms. (Wehavetwooptionsfordescribingsuchaxioms, eitherascommutativediagramsorasstringdiagrams[JS91a]inV. Throughoutthisintroductionweuse 4 both,toensureallreadersfindsomethingtheyarecomfortablewith;laterinthepaperweusewhichever ismostconvenient.) • (identity) Foralla,b ∈ C, (j 1 )◦(−◦ −) = 1 and (1 )◦(−◦ −) = 1 : a C(a→b) C C(a→b) C(a→b)j C C(a→b) b C(a →a)C(a →b) C(a →b)C(b →b) ja1C(a→b) 1C(a→b)jb C(a →b) −◦ − and C(a →b) −◦ − C C 1C(a→b) 1C(a→b) C(a →b) C(a →b) Instringdiagramstheaboveaxiomreadsas: C(a→b) C(a→b) C(a→b) −◦ − −◦ − C C = = . j j a b C(a→b) C(a→b) C(a→b) • (associativity) Foralla,b,c,d ∈ C,thefollowingdiagramcommutes: C(a →b)C(b →c)C(c →d) 1(−◦C−) C(a →b)C(b →d) (−◦C−)1 (−◦C−) C(a →c)C(c →d) (−◦C−) C(a →d) whichinstringdiagramsbecomes: C(a→d) C(a→d) −◦ − −◦ − C C = . −◦ − −◦ − C C C(a→b) C(b→c) C(c →d) C(a→b) C(b→c) C(c →d) From thispoint onward, weassumeV is abraided monoidalcategorywherethe braidingin V is denotedby β :uv →vu forallu,v ∈ V. u,v Definition 2.1. A (strict)2 V-monoidal category C3 is a V-enriched category C together with the followingdata: • aunitobject1 ∈ C, C • foreverya,b ∈ C,anobjectab ∈ C,and • foralla,b,c,d ∈ C,atensorproductmorphism−⊗ − ∈ V(C(a →c)C(b →d) → C(ab →cd)) C whichsatisfythefollowingaxioms: 2Itwouldbewonderfulforsomeonetoworkouttheaxiomsforanon-strictV-monoidalcategory! 3OnecanmotivatethisdefinitionbytakingtheusualnotionofaV-enrichedcategory,atfirstnotusingthebraiding, thengivingA×B,forAandBV-enrichedcategories,thestructureofaV-enrichedcategorybydefiningthecomposition usingthebraidinginV intheinevitableway.Afterthis,thedefinitionaboveisjusttheusualdefinitionofa(strict)monoidal category.Perhapssomeonewillproveacoherencetheoremfornot-necessarily-strictmonoidalcategoriesenrichedinabraided monoidalcategory,butfornowwestayinthestrictsetting. 5 • (strictunitorforobjects)Foralla ∈ C,1 a =a1 =a. C C • (strictassociatorforobjects)Foralla,b,c ∈ C, (ab)c =a(bc). • (unitality)Foralla,b ∈ C, (j 1 ) ◦ (−⊗ −) = 1 , (1 j ) ◦ (−⊗ −) = 1 , 1C C(a→b) C C(a→b) C(a→b) 1C C C(a→b) and (j j ) ◦ (−⊗ −) = j . a b C ab • (associativityof−⊗ −)Foralla,b,c,d,e,f ∈ C,thefollowingdiagramcommutes: C C(a →d)C(b →e)C(c → f) 1(−⊗C−) C(a →d)C(bc →ef) (−⊗C−)1 (−⊗C−) C(ab →de)C(c → f) (−⊗C−) C(abc →def). • (braidedinterchange)Foralla,b,c,d,e,f ∈ C,thefollowingdiagramcommutes: C(a →b)C(d →e)C(b →c)C(e → f) (−⊗C−)(−⊗C−) C(ad →be)C(be →cf) −◦ − C 1βC(d→e)C(b→c)1 C(ad →cf). −◦ − C C(a →b)C(b →c)C(d →e)C(e → f) (−◦C−)(−◦C−) C(a →c)C(d → f) Thecorrespondingstringdiagramforthebraidedinterchangerelationwasalreadygivenin(1.1). 2.1. v-gradedmorphisms. AstheobjectsoftheenrichingcategoryV donotnecessarilyhaveunder- lyingsets,wemustbecarefulwhentalkingabout‘morphismsinaV-enrichedcategory’. A1 -graded V morphismfroma tob inaV-monoidalcategory C isamorphism1 → C(a →b) ofV,andav-graded V morphism,forv anobjectofV,isamorphismv → C(a →b). Wecancompose(ortensor)au-graded morphismwithav-gradedmorphismtoobtainauv-gradedmorphism. A1 -gradedmorphism f : 1 → C(a →b) isinvertible ifthereisamorphismд : 1 → C(b →a) V V V calledaninverse suchthatthemaps 1 −−f→д C(a →b)C(b →a) −−−−◦−C→− C(a →a) V 1 −д−→f C(b →a)C(a →b) −−−−◦−C→− C(b →b) V areidentityelements,i.e., (fд) ◦ (−◦ −) = j and (дf) ◦ (−◦ −) = j . Noticethatif f isinvertible,the C a C b usualproofshowsitsinverseisuniqueandcanbedenoted f−1: h = (hj ) ◦ (−◦ −) = (hfд) ◦ (−◦ −◦ −) = (j д) ◦ (−◦ −) =д. a C C C b C Thereareobviousnotionsofmonomorphismsandepimorphismswhichweleavetothereader. 2.2. V-functors. AV-functor F : C → D betweenV-enrichedcategoriesisjustafunctionbetween theobjects,andforeacha,b ∈ C,anelement F ∈ V(C(a →b) → D(F (a) → F (b)),suchthat a→b −◦ − C(a →b)C(b →c) C C(a →c) (2.1) F F F a→b b→c a→c −◦ − D(F (a) → F (b))D(F (b) → F (c)) D D(F (a) → F (c)) 6 commutes,asdoes C(a →a) jC a (2.2) 1V Fa→a . jD F(a) D(F (a) → F (a)) Given V-functors F : C → D and G : D → E, we define the V-functor F ◦ G : C → E by (F ◦G) = F ◦G foralla,b ∈ C. a→b a→b F(a)→F(b) Av-graded natural transformation λ (again, forv ∈ V) between V-functors F,G : C → D is a collectionλ :v → D(F (a) → G(a)) sothatthefollowingdiagramcommutesforallobjectsa,b: a vC(a →b) λaGa→b D(F (a) → G(a))D(G(a) → G(b)) −◦ − D β D(F (a) → G(b)). −◦ − D C(a →b)v Fa→bλb D(F (a) → F (b))D(F (b) → G(b)) (Thisisjust‘thenaturalitysquare,viewedfromoutside’.) Wewriteλ : F ⇒ G. NoticethatweareonlytalkingaboutnaturaltransformationsforV-enrichedcategoriesratherthan V-monoidalcategories,andyetthebraidinginV isessentialtothedefinition! Lemma 2.2. Suppose λ : F ⇒ G is au-graded natural transformation, and µ : G ⇒ H is av-graded naturaltransformation. Thenthereisauv-gradednaturaltransformationλ◦µ : F ⇒ H,calledthevertical composite,definedby (λ◦µ) :uv −λ−a−µ→a D(F (a) → G(a))D(G(a) → H(a))) a −◦ − −−−D−→D(F (a) → H(a)). Verticalcompositionisassociative. Theproofissufficientlystraightforwardthatweleaveitasanexercise. Similarly,horizontalcompositionfollowstheusualformula: Lemma 2.3. Suppose κ : F ⇒ G is a u-graded natural transformation where F,G : C → D, and λ : H ⇒ I is v-graded where H,I : D → E. The following formula defines a uv-graded natural transformationcalledthehorizontalcomposite:κλ : F ◦H ⇒ G ◦I by κaλG(a) (κλ) :uv −−−−−−→D(F (a) → G(a))E(H(G(a)) → I(G(a))) a HF(a)→G(a)1 −−−−−−−−−−→E(H(F (a)) → H(G(a)))E(H(G(a)) → I(G(a))) −◦ − −−−−E→E(H(F (a)) → I(G(a))). Again,horizontalcompositionisassociative. 7 Lemma2.4. Naturaltransformationsthemselvessatisfyabraidedinterchange. GivenV-monoidalcate- gories,functors,andnaturaltransformations H K µ G ν J C D E κ λ F I whereκ,λ,µ,ν arerespectivelyu,v,w,x-gradednaturaltransformations,wehave ((κλ) ◦ (µν)) = (1 β 1 ) ◦ ((κ ◦µ)(λ◦ν)) :uvwx → E(I(F (a)) → K(H(a))). a u v,w x a WedefertheproofsofLemma2.3andLemma2.4toAppendixA.2. Remark2.5. ItwouldbeinterestingtoshowthatV-categories,V-functors,andV-naturaltransformations form a V-enriched 2-category. In doing so, one would define a Hom-object Nat(F ⇒ G) ∈ V for V- functors F,G : C → D. Wecouldthenexpressverticalcompositionasamorphism−◦ − : Nat(F ⇒ Nat G)Nat(G ⇒ E) → Nat(F ⇒ E) and horizontal composition as a morphism − ⊗ − : Nat(F ⇒ Nat G)Nat(H ⇒ I) → Nat(FI ⇒ GI). One would then prove that these morphims satisfied a braided interchange. 2.3. Self-enriched categories. Given a braided rigid category V, we can construct a V-monoidal category V(cid:68) with the same objects as V, and V(cid:68)(u → v) d=ef u∗v. The composition and tensor product mapsaregivenby −◦(cid:68)− : V(cid:68)(u →v)V(cid:68)(v →w) =u∗vv∗w −u−∗−e−v−v−→w u∗w = V(cid:68)(u →w) V = −◦V(cid:68)− −⊗(cid:68)− : V(cid:68)(u →v)V(cid:68)(w →x) =u∗vw∗x −−β−u−∗−1v−,w−−∗→x w∗u∗vx = V(cid:68)(uw →vx) V = −⊗V(cid:68)− Itisanenjoyableexercisetodiscoverthatthesesatisfythebraidedexchangelaw: = . ThisexampleisrelatedtothecanonicalfunctorV →Z(V) whenV isbraided,viaourmaintheorem. It istheanalogueinthebraidedrigidsettingoftheexamplein§1.6of[Kel05]. The category Tangle of (unoriented, framed) tangles is a braided rigid monoidal category. It has a faithfulfunctorfromBraid,thefreebraidedmonoidalcategoryononeobject. TheobjectsofTangleand ofBraidarejustthenaturalnumbers. Wedenotethestandardgeneratorsofthebraidgroupbyσ . i (cid:70) WecanformTangle,thecategoryoftanglesenrichedinitself. Thisallowsustoprovethefollowing usefulresult. 8 Lemma2.6. Supposethatanequationoftheform C(ad →cf) C(ad →cf) −◦ − −◦ − C C = C(ad →be) C(be →cf) C(ad →be) C(be →cf) −⊗ − −⊗ − −⊗ − −⊗ − C C C C C(a→b) C(d →e) C(b→c) C(e → f) C(a→b) C(d →e) C(b→c) C(e → f) γ γ(cid:48) whereγ andγ(cid:48)are4-strandbraidswiththesameunderlyingpermutation,holdsforallV-enrichedcategories, andallchoicesofobjectsa,b,c,d,e,f. Thenγ =γ(cid:48). Proof. We picka = c =d = f = 1, andb = e = 0 in T(cid:70)angle. Then T(cid:70)angle(1 → 0) = T(cid:70)angle(0 → 1) = 1, and(abbreviatingTangletoT) (cid:68) T(2→2) −◦ − C (cid:68) (cid:68) T(2→0) T(0→2) = −⊗ − −⊗ − C C (cid:68) (cid:68) (cid:68) (cid:68) T(1→0) T(1→0) T(0→1) T(0→1) Thus the equation reduces toγσ−1 =γ(cid:48)σ−1 in Tangle, which is equivalent toγ =γ(cid:48). Since braids map 1 1 faithfullyintotangles,wehavetheconclusion. (cid:3) 2.4. TherotationofaV-monoidalcategory. Givenamonoidalcategory C enrichedinasymmetric monoidalcategory,wecantaketheoppositecompositionortheoppositetensorproduct,obtaininganew enrichedmonoidalcategory. Whentheenrichmentismerelybraided,wefindthatthisisnotthecase. Neverthelessthereissomethingwhichwecalltheπ-rotationof C,whichisformedbysimultaneously modifyingthecompositionandthetensorproduct. Thisisanotherpointofdeparturefromthetheoryfor symmetricenrichments. Lemma2.7. Supposethat C isaV-monoidalcategory. Consideranewcompositionandtensorproducton C givenby −◦ − −⊗ − −◦(cid:48) − = C and −⊗(cid:48) − = C C C βk βl forsomek,l ∈ Z. Thesealwayssatisfyassociativity,butsatisfythebraidedinterchangeaxiomifandonlyif k =l. 9 Proof. Thebraidedinterchangeaxiombecomes(bypullingcompositionortensorproductmorphisms throughthetwists) −◦− −◦− −⊗− −⊗− −⊗− −⊗− = ∆ (β)k ∆ (β)(cid:96) 2 2 β(cid:96) β(cid:96) βk βk where ∆ (β) = =σ σ σ σ denotesthetwostrandcablingof β. ByLemma2.6,wehavethat 2 2 1 3 2 σlσl(σ σ σ σ )k =σ σkσk(σ σ σ σ )lσ−1 1 3 2 1 3 2 2 1 3 2 1 3 2 2 (recallthattheσ arethestandardgeneratorsofthebraidgroup). WethenapplytheBuraurepresentation i tothisidentity. Lookingatthefirstcolumnofthelastrowoftheresulting4-by-4matrices,weobtain (cid:16) (cid:17) (cid:16) (cid:17) (−1)k + (−1)l+1 tk+l+2 + (−1)k + (−1)l+1 tk+l+4 −2(−1)kt2k+3 +2(−1)lt2l+3 = 0. Itisrelativelystraightforwardtoseethatthispolynomialint onlyvanishesidenticallywhenk =l or whenk =l±1. Wenowtakethesecondcolumnofthesecondrow,andaftersettingk =l±1andclearing adenominator,obtain (cid:16) (cid:17) 2(−1)l(t −1)2(t +1) t2 +1 t2l±1 = 0 whichisimpossible. Thuswemusthavek =l,andanisotopyverifiesthatthebraidedinterchangeaxiom indeedholds. (cid:3) Noteintheabovethatiftheenrichingcategoryweresymmetric,theintegersk andl wouldonlyhave appearedmodulo2,andindeedallfourchoiceswouldhavegivennewenrichedmonoidalcategories. Definition2.8. Wedefine Crot tobetheV-monoidalcategoryobtainedtakingk =l = 1intheabove lemma. Again,notethatinthesymmetricallyenrichedcase, (Crot)rot = C. Generally,thisisnotthecase,so weobtainanintegerfamilyofrotationsoftheoriginalcategory. Whenwediscussrigiditybelow,wewill seethatachoiceofdualityfunctorisachoiceofanisomorphism C (cid:27) Crot. 2.5. Products of V-monoidal categories (only?) exist when V is symmetric. We now point out asignificantdifferencebetweenthetheoryofmonoidalcategorieswithabraidedenrichment,andthe theoryofmonoidalcategorieswithasymmetricenrichment. If C and D areV-monoidalcategoriesenrichedinasymmetricmonoidalcategoryV,wecandefine theirCartesianproduct C × D,whichisalsoaV-monoidalcategory. First,weproducethe (V ×V)- V enrichedmonoidalcategory C ×D by (C ×D)((a,c) → (b,d)) = C(a →b)D(c →d),andcomposition 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.