ebook img

Monoidal algebraic model structures PDF

0.46 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Monoidal algebraic model structures

MONOIDAL ALGEBRAIC MODEL STRUCTURES EMILYRIEHL 2 1 0 2 Abstract. Extendingpreviouswork,wedefinemonoidalalgebraicmodelstructuresand n give examples. The main structural component is what we call an algebraic Quillen u two-variable adjunction; the principal technical work is to develop the category theory J necessary to characterize them. Our investigations reveal an important role played by 6 “cellularity”—loosely,thepropertyofacofibrationbeingarelativecellcomplex,notsim- plyaretractofsuch—whichweparticularlyemphasize.Amainresultisasimplecriterion ] whichshowsthatalgebraicQuillentwo-variableadjunctionscorrespondpreciselytocell T structuresonthepushout-productsofgenerating(trivial)cofibrations. Asacorollary,we C discoverthatthefamiliarmonoidalmodelstructuresoncategoriesandsimplicialsetsadmit . thisextraalgebraicstructure. h t a m Contents [ 1. Introduction 2 2 2. Doublecategories,mates,parameterizedmates 6 v 2.1. Doublecategoriesandmates 6 3 2.2. Parameterizedmates 8 8 3. Preliminariesonalgebraicweakfactorizationsystems 10 8 3.1. Weakfactorizationsystems 10 2 . 3.2. Algebraicweakfactorizationsystems 12 9 3.3. Thealgebraicsmallobjectargument 12 0 4. Morphismsofalgebraicweakfactorizationsystems 13 1 1 4.1. Morphisms 13 : 4.2. Colaxmorphisms,laxmorphisms,andadjunctions 14 v i 4.3. Bicolaxmorphisms,bilaxmorphisms,andtwo-variableadjunctions 15 X 5. Thecompositioncriterion 18 r 5.1. Doublecategoricalaspectsofalgebraicweakfactorizationsystems 18 a 5.2. Adjunctionsarisingfromtwo-variableadjunctions 20 5.3. Compositioncriterion 23 6. Thecellularityanduniquenesstheorems 27 6.1. Cellularityandadjunctionsofawfs 27 6.2. Thecellularitytheorem 28 6.3. Extendingtheuniversalpropertyofthesmallobjectargument 32 7. AlgebraicQuillentwo-variableadjunctions 34 7.1. Algebraicmodelstructures 35 7.2. AlgebraicQuillenadjunctions 35 7.3. AlgebraicQuillentwo-variableadjunctions 38 8. Monoidalalgebraicmodelstructures 40 References 47 Date:June7,2012. 1 2 EMILYRIEHL 1. Introduction Algebraic modelstructures, introducedin [22], are a structuralextensionof Quillen’s modelcategories[21] in which cofibrationsand fibrationsare “algebraic,” i.e., equipped with specified retractionsto their left or rightfactors which can be used to solve all lift- ing problems. The factorizationsthemselvesare much more than functorial: the functor mappinganarrowtoitsrightfactorisa monadandthefunctormappingtoitsleftfactor isacomonadonthearrowcategory.Inparticular,thedataofanalgebraicmodelcategory determinesafibrantreplacementmonadandacofibrantreplacementcomonad. Despite the stringentstructuralrequirementsof this definition, algebraic modelstruc- turesare quiteabundant. A modifiedsmallobjectargument,dueto Richard Garnerpro- ducesan algebraicmodelstructurein placeof an ordinarycofibrantlygeneratedone[6]. Thedifferenceisthatthemaincomponentsofamodelstructure—theweakfactorization systems(C∩W,F)and(C,F∩W)—arereplacedwithalgebraicweakfactorizationsystems (C,F)and(C,F),whicharecategoricallybetterbehaved. t t Wefindtheweakfactorizationsystemperspectiveonmodelcategoriesclarifying. The overdeterminationofthemodelcategoryaxiomsandtheclosurepropertiesoftheclassesof cofibrationsandfibrationsareconsequencesofanalogouscharacteristicsoftheconstituent weakfactorizationsystems. Quillen’ssmallobjectargumentis reallya constructionof a functorialfactorizationfor a cofibrantly generated weak factorization system; the model structure context is beside the point. Also, the equivalence of various definitions of a Quillen adjunction has to do with the separate interactions between the adjunction and eachweakfactorizationsystem. Moreprecisely,analgebraicmodelstructureonacategoryMwithweakequivalences W consists of two algebraic weak factorization systems (henceforth, awfs for both the singularandtheplural)togetherwithamorphismξ: (C,F)→(C,F)betweenthemsuch t t thattheunderlyingweakfactorizationsystemsformamodelstructureintheusualsense. HereC andCarecomonadsandF andFaremonadsonthearrowcategoryM2thatsend t t anarrowtoitsappropriatefactorwithrespecttothefunctorialfactorizationsofthemodel structure. We write R,Q: M2 ⇒ M for the functors that assign to an arrow the object through which it factors. The notation is meant to evoke fibrant/cofibrant replacement: slicingoverthe terminalobjector undertheinitialobjectdefinesthe fibrantreplacement monadandcofibrantreplacementcomonad,alsodenotedRandQ. The natural transformation ξ, which we call the comparison map, plays a number of roles.Itscomponents Cf (1.1) domf // Qf Ctf (cid:15)(cid:15) ✇✇✇ξ✇f✇✇✇✇✇;; (cid:15)(cid:15) Ftf Rf //codf Ff arenaturalsolutionstotheliftingproblem(1.1)thatcomparesthetwofunctorialfactoriza- tionsof f ∈M2. Additionally,ξmustsatisfytwopentagons:oneinvolvingthecomultipli- cationsofthecomonadsandoneinvolvingthemultiplicationsofthemonads.Underthese hypotheses,ξdeterminesfunctorsoverM2 (1.2) ξ : C-coalg→C-coalg ξ∗: F-alg→F-alg ∗ t t betweenthecategoriesofcoalgebrasforthecomonadsandbetweenthecategoriesofalge- brasforthemonads. MONOIDALALGEBRAICMODELSTRUCTURES 3 Elementsof,e.g.,thecategoryF-algarecalledalgebraicfibrations;theirimagesunder theforgetfulfunctortoM2 areinparticularfibrationsinthemodelstructure. Thealgebra structureassociatedtoanalgebraicfibrationdeterminesacanonicalsolutiontoanylifting problem of that arrow against an algebraic trivial cofibration. Naturality of ξ together with the functors (1.2) imply that there is also a single canonical solution to any lifting problemofanalgebraictrivialcofibrationagainstanalgebraictrivialfibration:thesolution constructedusingξ andtheawfs(C,F)agreeswiththesolutionconstructedusingξ∗ and ∗ t theawfs(C,F). t Forcertainliftingproblems,thesecanonicalsolutionsthemselvesassembleintoanat- ural transformation. For instance, the natural solution to the usual lifting problem that comparesthetwofibrant-cofibrantreplacementsofanobjectdefinesanaturaltransforma- tionRQ⇒QRthatturnsouttobeadistributivelawofthefibrantreplacementmonadover the cofibrantreplacementcomonad. Itfollowsthat Q lifts to a comonadon the category R-alg of algebraic fibrant objects, and dually R lifts to a monad on Q-coalg. The coal- gebrasfortheformerandalgebrasforthelatercoincide,definingacategoryofalgebraic fibrant-cofibrantobjects. Any ordinary cofibrantly generated model structure gives rise to an algebraic model structure using a modified form of Quillen’s small object argumentdue to Richard Gar- ner. As a result, this algebraic structure is much more commonthat might be supposed. Wheneverthe category permits the small object argument, any small category of arrows generates an algebraic weak factorization system that satisfies two universal properties, bothofwhichwefrequentlyexploit[5,6]. Awfswereintroducedtoimprovethecategoricalpropertiesofordinaryweakfactoriza- tion systems [8]. One feature of awfs is that the left and right classes are closed under colimitsand limits, respectively, in the followingprecise sense. By standardmonadicity results,theforgetfulfunctorsC-coalg → M2, F-alg → M2 createallcolimitsandlimits, respectively,existinginM2. Inthecontextofalgebraicmodelstructures,thisgivesanew recognitionprincipleforcofibrationsconstructedascolimitsandfibrationsconstructedas limits. Familiarly,acolimit(inthearrowcategory)ofcofibrationsisnotnecessarilyacofi- bration. Butifthecofibrationsadmitcoalgebrastructuresthatarepreservedbythemaps inthediagram,thenthecolimitiscanonicallyacoalgebraandhenceacofibration. Whenthemodelstructureiscofibrantlygenerated,allfibrationsandalltrivialfibrations arealgebraic,i.e.,admitalgebrastructures;interestinglythedualstatementsdonothold. Transfinite composites of pushouts of coproducts of generating cofibrations i ∈ I—the class of maps denoted I-cell in the classical literature [10, 9]—are necessarily algebraic cofibrations.Accordingly,wecalltheclassofcofibrationsthatadmitaC-coalgebrastruc- turethecellularcofibrations;acofibrationiscellularifandonlyifitcanbemadealgebraic. Allcofibrationsareatleastretractsofcellularones.Cellularitywillplayaninterestingand importantroleinthenewresultsthatfollow. For example, if A is a commutative ring, the arrow 0 → A generates an awfs on the categoryof A-moduleswhose rightclass isthe epimorphismsandwhose leftclassis the injections with projective cokernel. Each epimorphism M ։ N admits (likely many) algebrastructures: an algebrastructureisa section N → M, notassumed to bea homo- morphism. Thecellular maps—thatis, those arrowsadmittingcoalgebrastructures—are thoseinjectionswhichhavefreecokernel. The basic theory of algebraic model structures is developedin [22]; referencesto re- sultsthereinwillhavetheformI.x.x.Inparticular,thatpaperdefinesanalgebraicQuillen 4 EMILYRIEHL adjunction,whichisanordinaryQuillenadjunctionsuchthattherightadjointliftstocom- mutingfunctorsbetweenthealgebraic(trivial)fibrationsandtheleftadjointliftstocom- mutingfunctorsbetweenthecategoriesofalgebraic(trivial)cofibrations. Thisshouldbe thoughtof an algebraization of the usual conditionthat the right adjointpreserves fibra- tions and trivial fibrations and left adjoint preserves cofibrationsand trivial cofibrations. We also ask that the lifts of one adjoint determine the lifts of the other in a sense made precisebelow, a conditionthatmirrorsthe classical factthata Quillenadjunctioncan be detectedbyexaminingtheleftorrightadjointalone. AlgebraicQuillenadjunctionsexist in an important class of examples: when a cofibrantly generated algebraic model struc- tureisliftedalonganadjunction,theresultingQuillenadjunctioniscanonicallyalgebraic. Examples include the geometric realization–total singular complex adjunction between simplicialsetsandspaces,theadjunctionbetweenG-spacesandspace-valuedpresheaves on the orbit category for a groupG, and the adjunctionsestablishing a projective model structure. A classical categorical result characterizes lifted functors of algebraic fibrations, i.e., functorsbetweenthecategoriesofalgebrasforthemonads,ascertainnaturaltransforma- tionssometimescalledlaxmonadmorphisms,butthisconditionalonefailstocapturethe symmetryof the classical situation where a right adjointpreservesfibrations if and only ifitsleftadjointpreservestrivialcofibrations. Therearetwowaystodescribethedesired additionalhypothesis. Oneistoaskthatthemateofthenaturaltransformationcharacter- izingtheliftedfunctorofalgebraicfibrationsdefinestheliftedfunctorofalgebraictrivial cofibrations. An equivalent condition is that the lifted functor of algebraic fibrations is in fact a lifted doublefunctor between doublecategoriesof algebraicfibrations, suitably defined. Inthispaper,weextendtheseresultsinordertodefinemonoidalandeventuallyenriched algebraic model structures. The technical work in this paper puts the latter definition in immediatereach;however,wepostponeittoafuturepaperwhichwillhavespacetofully explore examples. Much of the structure of a closed monoidal category or a tensored and cotensoredenrichedcategoryis encodedin a two-variable adjunction. For enriched categories,theconstituentbifunctorsarecommonlydenoted V×M −⊙− //M Vop×M {−,−} // M Mop×M hom(−,−)//V andcomeequippedwithhom-setisomorphisms (1.3) M(V⊙M,N)(cid:27)M(M,{V,N})(cid:27)V(V,hom(M,N)) naturalinallthreevariables.Fixinganyonevariable,two-variableadjunctionsgiveriseto parameterizedfamiliesofordinaryadjunctions,e.g.,−⊙M ⊣hom(M,−). The monoidal case necessarily precedes the enriched one but also inherits all of its complexity. Aclosedmonoidalcategorywithanalgebraicmodelstructureisamonoidal algebraicmodelcategory if the canonicalcomparisonbetween a cofibrantobjectand its tensor with the cofibrant replacementof the monoidal unit is a weak equivalence and if the closed monoidal structure is an algebraic Quillen two-variable adjunction. Such an adjunctionconsistsofthreefunctorsliftingtheso-called“pushout-product” C-coalg×C-coalg // C-coalg t t C-coalg×C-coalg //C-coalg t t C-coalg×C-coalg //C-coalg MONOIDALALGEBRAICMODELSTRUCTURES 5 suchthatthematesofthecharacterizingnaturaltransformationsdeterminesimilarliftsof theleftandrightclosures. Inthebestcases,thesefunctorssatisfythreeevidentcoherence conditionswhich say that various canonicalcoalgebra structures agree, but we shall see thatsuchcoherenceistoomuchtoaskforingeneral. OnecouldalsodefineaweakernotionofanalgebraicQuillenbifunctorinthecontext of monoidalor enriched model categories in which some of the adjoint bifunctorsdon’t exist. Thisisless categoricallychallengingthanthetheorypresentedhere,so the details maybesafelylefttothereader. ThreemaintechnicaltheoremsallowustoidentifyalgebraicQuillentwo-variablead- junctions in practice. The first describes a composition criterion that identifies when a liftedbifunctorispartofatwo-variableadjunctionofawfs,theappropriatenotionofalge- braicQuillentwo-variableadjunctionforcategoriesequippedwithasingleawfsinplace of a full algebraic model structure. The other two results, which we call the cellular- ity and uniqueness theorems, combine to characterize two-variable adjunctions of awfs in the case when the awfs are cofibrantly generated. The cellularity theorem says that a two-variableadjunctionofawfsarisesfromanyassignmentofcoalgebrastructurestothe pushout-productofthegenerators;hence,suchstructuresexistifandonlyifthepushout- productofthegeneratorsiscellular.Theuniquenesstheoremsaysthatsuchanassignment completelydeterminestheliftedfunctors,soatmostonetwo-variableadjunctionofawfs canbeobtainedinthisway. Several new categorical results were necessary to make all of this precise. Of most generalcategoricalinterestisthetheoryofparameterizedmates,introducedin§2below. Thistheorydescribestherelationshipbetweenthe naturaltransformationscharacterizing the lifts of the three bifunctors constituting a two-variable adjunction of awfs and their interactionswithordinaryadjunctionsofawfs. Other results appearing below are designed to deal with complications arising in the proofsof the cellularity and uniquenesstheorems. The main technical difficulty is quite simplyaccountedfor: in [22], the onlyadjunctionsconsideredbetweenarrowcategories were those of the form T2: M2 ⇄ K2: S2, i.e., defined pointwise by an ordinary ad- junctionT: M ⇄ K: S betweenthebasecategories. However,theadjunctionsonarrow categoriesarisingfromtwo-variableadjunctionsonthebasesnolongerhavethisformand inparticulardon’tpreservecomposabilityofarrows. Thus,thedoublecategoricalcompo- sitioncriterionweusetogreateffectinthepreviouspapertocharacterizethoseliftedleft adjointsthatdetermineliftsofrightadjointsmusttakeonanewform. In§2,weintroducedoublecategories,mates,andparameterizedmatesandprovesome elementarylemmas which will be quoted frequently. In §3, we review lifting properties and functorialfactorizations, wfs and awfs, and the algebraic small object argument. In §4,wepresentavarietyofnotionsofmorphismbetweenawfsondifferentcategoriesand definethenewnotionoftwo-variableadjunctionofawfs. In§5,weprovethecomposition criterionwhichallowsustorecognizewhenagivenliftedbifunctorofawfs(co)algebras determinesa two-variableadjunctionsofawfs. In§6, weusethisresulttoprovethecel- lularitytheorem.WethenextendtheuniversalpropertyofGarner’ssmallobjectargument andusethistoprovetheuniquenesstheorem. In§7,weapplytheseresultstomodelcat- egories,introducinganotionofalgebraicQuillentwo-variableadjunctions. Finallyin§8, wedefinemonoidalalgebraicmodelstructuresanddescribeexamples. 6 EMILYRIEHL 2. Doublecategories,mates,parameterizedmates Thecalculusofmateswillplayanimportantconceptualandcalculationalroleinwhat follows.Tostreamlinelaterproofs,wetakeafewmomentsin§2.1tooutlinetheimportant featureswithoutgettingmiredintechnicaldetails. Thecanonicalreferenceis[16];wealso like[23]. Bifunctors, meaning functorswhose domain is the productof two categories, are de- termined by the collection of single-variable functors obtained when one object is fixed togetherwith the naturaltransformationsbetweensuch functorsarising frommorphisms in that category. This fact is often expressed by saying that category CAT is cartesian closed. For this simple reason, the classical theory of mates extends to a new theory of parameterizedmates,introducedin§2.2. 2.1. Doublecategoriesandmates. AdoublecategoryDisacategoryinternaltoCAT: dom ◦ // D1×D1 //D1 oo id //D0 D0 cod TheobjectsandarrowsofD arecalledobjectsandhorizontalarrowsofDwhiletheobjects 0 andarrowsofD arecalledverticalarrowsandsquares.Viathefunctorsdom,cod: D ⇒ 1 1 D , the sources and targets of vertical arrows are objects of D, and likewise the squares 0 can be depicted in the way their name suggests. Squares can be composed horizontally usingcompositioninD andverticallyusingthefunctor◦,whosedomainisthepullback 1 ofdomalongcod. Asaconsequenceoffunctorialityof◦,theorderinwhichverticaland horizontalcompositesaretakeninapastingdiagramofsquaresdoesnotmatter. Werefer toD asthecategoryofverticalarrows; thiscategoryforgetsthecompositionofvertical 1 arrowsandremembersonlythehorizontalcompositionofsquares. Example2.1. AcategoryMgivesrisetoadoublecategorySq(M) dom M3 (cid:27)M2×M2 ◦ // M2 oo id ////M M cod whoseobjectsareobjectsofM,horizontalandverticalarrowsaremorphismsofM, and squares are commutative squares. The category of vertical arrows is usually called the arrowcategoryandplaysanessentialroleinthispaper. Given categories, functors, and adjunctions, as displayed below, there is a bijection betweennaturaltransformationsinthesquareinvolvingtheleftadjointsandnaturaltrans- formationsinthesquareinvolvingtherightadjoints (2.2) · H // · · H // · · H //· OO OO OO OO T ⊣ S T′ ⊣ S′ T λw T′ ! S uρ S′ (cid:15)(cid:15)· //(cid:15)(cid:15)· ·(cid:15)(cid:15) //·(cid:15)(cid:15) · //· K K K givenbytheformulas (2.3) ρ=S′Kǫ·S′λ ·ι and λ=ν ·T′ρ ·T′Hη, S HS KT T where η and ǫ are the unit and counit for T ⊣ S and ι and ν are the unit and counit for T′ ⊣S′. Correspondingλandρarecalledmates. Example2.4. AnaturaltransformationH ⇒Kisitsownmatewithrespecttotheidentity adjunctions. MONOIDALALGEBRAICMODELSTRUCTURES 7 Example2.5. Write1fortheterminalcategory.Adjunctarrows f♯: Tm→k∈K, f: m→ Sk ∈ M correspondingunder the adjunctionT: M ⇄ K: S are mates in the following squares 1 m // M 1 m //M OO OO 1 f♯w T ! 1 uf S (cid:15)(cid:15) (cid:15)(cid:15) 1 //K 1 //K k k Example 2.6. If M has a left-closed monoidalstructure and f: m′ → m ∈ M, then the inducednaturaltransformations M 1 // M M 1 // M OO OO m⊗− f⊗−w m′⊗− ! hom(m,−) uhom(f,−) hom(m′,−) (cid:15)(cid:15) (cid:15)(cid:15) M //M M //M 1 1 aremates.Analogouscorrespondencesholdforanyparameterizedadjunction[18,IV.7.3]. There are double categories Ladj and Radj whose objects are categories, horizontal arrows are functors, vertical arrows are adjunctions in the direction of the left adjoint, andwhosesquaresare naturaltransformationsas displayedin the middleand right-hand squaresof (2.2), respectively. The mates correspondenceis natural, or, more accurately, functorial,inthefollowingprecisesense. Theorem2.7(Kelly-Street[16,§2]). Thematescorrespondencegivesanisomorphismof doublecategoriesLadj(cid:27)Radj. ThissaysthatanaturaltransformationobtainedbypastingsquaresinLadjeitherverti- callyorhorizontallyisthemateofthenaturaltransformationobtainedbypastingthemates ofthesesquaresinRadj. The“calculusofmates”referstothisfact,which,whenusedin conjunctionwithExamples2.4–2.6,impliesthatmatessatisfy“dual”diagrams. Forinstance,supposethefunctorsH andK of(2.2)aremonads(H,η,µ),(K,η,µ)and supposeT = T′ and S = S′. A pair(S,ρ) as in the rightsquare of(2.2) is a lax monad morphismif HSK S✼ H♦ρ♦♦♦77 ❖❖❖ρ❖K'' ✞ ✼ HHS SKK (2.8) η(cid:3)(cid:3)✞✞S✞✞✞✞ ρ ✼✼✼S✼✼η(cid:27)(cid:27) and µ✴S✴✴✴✴✴ ✎✎✎S✎✎µ HS //SK ✴(cid:23)(cid:23) ρ (cid:7)(cid:7)✎✎ HS // SK commute. Thedefinitionsin§4takeseveralequivalentformsonaccountofthefollowing result. Lemma2.9(Appelgate[11]). Alaxmonadmorphism(S,ρ)determinesandisdetermined byaliftofS toafunctorK-alg→H-alg. Proof. TheH-algebrastructureassignedtotheimageofaK-algebrat: Kx → xunderS is HSx ρx //SKx St // Sx (cid:3) Thedualnotion,acolaxmonadmorphism,isapair(S,ρ)satisfyingdiagramsanalogous to(2.8)butwiththedirectionofρreversed. 8 EMILYRIEHL Lemma2.10. Suppose(S,ρ)isalaxmonadmorphism,T ⊣S,andλisthemateofρwith respecttothisadjunction.Then(T,λ)isacolaxmonadmorphism. Proof. We show (T,λ) satisfies the pentagon and leave the triangle as an exercise. The pentagonfor(S,ρ)saysthattheleftpastedsquares · HH // · · H // · H //· · HH // · · H // · H // · OO OO OO OO OO 1 µu 1 S ρu S ρu S 1 µw 1 T λw T λw T · // · = · //· // · ·(cid:15)(cid:15) // ·(cid:15)(cid:15) = ·(cid:15)(cid:15) //·(cid:15)(cid:15) // ·(cid:15)(cid:15) OO H OO OO K K OO H K K S ρu S 1 µu 1 T λw T 1 µw 1 · //· · //· ·(cid:15)(cid:15) //·(cid:15)(cid:15) ·(cid:15)(cid:15) //·(cid:15)(cid:15) K K K K areequalinRadj.ByTheorem2.7thepastedcompositesoftheirmatesinLadj,displayed ontherightabove,alsoagree. (cid:3) Of course, analogousresultshold with any 2-categoryin place of CAT; Theorem2.7 assertsthatthefunctorsLAdj,RAdj: 2-CAT⇒DblCATareisomorphic. 2.2. Parameterizedmates. Bya lemmabelow,in the contextofa two-variableadjunc- tion, or more generally a parameterized adjunction, the mates correspondences for the adjunctionsobtainedbyfixingtheparameterarenaturalintheparameter. Thismeansthat thetwosetsofmatesassembleintonaturaltransformationsoftwovariables. Wesaythat natural transformations correspondingin this way are parameterized mates. We are not awareifthiscorrespondencehasbeenstudiedbefore,butitisessentialtodescribethein- teractionsbetweenawfsandtwo-variableadjunctions.Thefollowinglemmasestablishthe barebonesofthistheory. First, we provethatif we fix oneof the variablesin a naturaltransformationbetween bifunctorswhicharepointwiseadjointsandthentakemates,theresultingpointwisemates assembletogiveanaturaltransformationbetweentheappropriatebifunctors. Lemma 2.11. Suppose given a pair of left-closed bifunctors ⊗,⊗′; ordinary functors K,M,N;andanaturaltransformationλ : Kk⊗′ Mm→N(k⊗m)asdisplayed k,m K×M K×M // K′×M′ ⊗ λw ⊗′ (cid:15)(cid:15) (cid:15)(cid:15) N // N N Letρ denotethemateofthenaturaltransformationλ withrespecttotheadjunctions k,− k,− k⊗− ⊣ hom(k,−) and Kk⊗′ − ⊣ hom′(Kk,−). Thenthe ρ are also naturalin K and k,− assembleintoanaturaltransformationρ : Mhom(k,n)→hom′(Kk,Nn) k,n M M //M′ OO OO hom uρ hom′ Kop×N //K′op×N′ K×N MONOIDALALGEBRAICMODELSTRUCTURES 9 Proof. NaturalityofλinKsaysthatforany f: k′ →kinK,thepastedcomposites M 1 // M M // M′ = M M // M′ 1 // M′ k⊗− f⊗−w k′⊗− λk′,−w Kk′⊗′− k′⊗− λk,−w Kk⊗′− Kf⊗′−w Kk′⊗′− (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) N //N // N′ N // N′ // N′ 1 N N 1 areequal.ByTheorem2.7,thepastedcomposites M 1 //M M //M′ = M M //M′ 1 // M′ OO OO OO OO OO OO uhom(f,−) uρk′,− uρk,− uhom′(Kf,−) hom(k,−) hom(k′,−) hom′(Kk′,−) hom(k,−) hom′(Kk,−) hom′(Kk′,−) N // N //N′ N //N′ //N′ 1 N N 1 arealsoequal,whichsaysthattheρ arenaturalinK. (cid:3) k Thefollowinglemmaestablishestheparameterizedmatescorrespondence. Lemma2.12. Giventwo-variableadjunctions(⊗,hom ,hom ),(⊗′,hom′,hom′)andfunc- ℓ r ℓ r torsK,M,Nasbelow,thereisabijectivecorrespondencebetweennaturaltransformations K×M K×M//K′×M′ M M //M′ K K //K′ OO OO OO OO ⊗ λw ⊗′ homℓ uρℓ hom′ℓ homr uρr hom′r (cid:15)(cid:15) (cid:15)(cid:15) N //N Kop×N // K′op×N′ Mop×N // M′op×N′ N Kop×N Mop×N obtainedbyapplyingthepointwisematescorrespondencetoeithervariable. Proof. By symmetry, it suffices to show that if we fix K and takes pointwise mates to defineρℓ fromλandthenfixNandtakepointwisematestodefineρr fromρℓ,theresultis thesameasfixingM andtakingpointwisematestodefineρr fromλ. Thisfollowsfrom theformulas(2.3),thecompatiblehom-setisomorphisms(1.3) andadiagramchase. We leavethedetailsasanexercisetothereaderwiththefollowinghint:wheninasequenceof composablearrows,oneseestheunitfollowedbyarrowsintheimageoftherightadjoint, thisassertsthatthecompositeisadjuncttowhateverremainswhentheunitandtheright adjointareerased. Wemadefrequentuseofthisobservationanditsdual. (cid:3) Acarefulstatementofthe“multi-functoriality”oftheparameterizedmatescorrespon- dence, the appropriate analog of Theorem 2.7, involves category objects in the category ofmulticategoriesequippedwithcertainadditionalstructure. Thisresultwillappearina separatepaper[3],jointworkwithEugeniaChengandNickGurski.Forpresentpurposes, weonlyneedapreliminarylemmainthisdirection. Lemma2.13. Compositionofparameterizedmatesinanyofthethreevariableswithor- dinarymatespointingincompatibledirectionsiswell-defined. 10 EMILYRIEHL Proof. Supposeλ,ρℓ,ρr areparameterizedmatesasinLemma2.12,andsupposeαandβ aremateswithrespecttothetopsquaresofthefollowingdiagraminLadj(cid:27)Radj. J J //J′ J J //J′ OO OO OO OO T ⊣ S T′ ⊣ S′ T ⊣ S T′ ⊣ S′ (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) K //K′ K // K′ OO K OO OO K OO −⊗m ⊣ homr(m,−) homℓ(−,n) ⊣ homr(−,n) −⊗′Mm ⊣ hom′r(Mm,−) hom′ℓ(−,Nn) ⊣ hom′r(−,Nn) (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) N //N′ Mop //M′op N M ApplyingTheorem2.7andLemma2.11totheleft-handrectangle,weseethat T′J⊗′ M α⊗′1 // KT ⊗′ M λT,1 // N(T ⊗−) and JShom (−,−) βhomr //S′Khom (−,−) S′ρr // S′hom′(M,N) r r r aremates;fromright-handrectangle,weseethatthissecondnaturaltransformationand Mhom (T,−) ρℓT,1 //hom′(KT,N)hom′ℓ(α,N)//hom′(T′J,N) ℓ ℓ ℓ aremates. ByLemma2.12,thethreecompositenaturaltransformationsareparameterized mates. (cid:3) Asaconsequence,algebraicQuillentwo-variableadjunctionspointinginthedirection of the left adjoints can be composed in any of their variableswith algebraic Quillen ad- junctionspointingalsointhedirectionoftheleftadjoints;seeLemma7.14. 3. Preliminariesonalgebraicweakfactorizationsystems Webrieflyreviewafewkeytopics:liftingproperties,weakfactorizationsystems,func- torialfactorizations,algebraicweakfactorizationsystems, andthealgebraicsmallobject argument. 3.1. Weakfactorizationsystems. Wewrite1,2,3,4forthecategoriesassignedtothese ordinals;e.g.,2isthe“walkingarrow”category,3isthefreecategorycontainingacom- posablepairofarrows,andsoon. ThefunctorcategoryM2 isthecategorywhoseobjects arearrowsinM,depictedvertically,andwhosemorphisms(u,v): f ⇒garecommutative squares (3.1) · u // · f g ·(cid:15)(cid:15) // ·(cid:15)(cid:15) v Any such square presentsa lifting problem of f againstg; a solution would be an arrow fromthebottomlefttotheupperrightsuchthatbothresultingtrianglescommute.Ifevery liftingproblempresentedbyamorphism f ⇒ ghasasolution,wesaythat f hastheleft liftingpropertyagainstgand,equivalently,thatghastherightliftingpropertyagainst f. Definition 3.2 (I.2.3, I.2.4). A weak factorization system (L,R) on M consists of two classesofmorphismssuchthat

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.