Monitoring the Propagation of Lung Sounds Using Electronic Stethoscope Arrays Submitted by: Kyle R. Mulligan, B. Eng A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Applied Science Ottawa-Carleton Institute for Biomedical Engineering Department of Systems and Computer Engineering Carleton University Ottawa Ontario, K1S 5B6 Canada September 2009 ©Copyright Kyle R. Mulligan, 2008 i The undersigned recommend to the Faculty of Graduate Studies and Research acceptance of the thesis Monitoring the Propagation of Lung Sounds Using Electronic Stethoscope Arrays submitted by Kyle R. Mulligan, B. Eng in partial fulfillment of the requirements for the degree of Master of Applied Science Biomedical Engineering ____________________________________________ Chair, Howard Schwartz, Department of Systems and Computer Engineering _____________________________________________ Thesis Supervisor, Andy Adler _____________________________________________ Thesis Co-Supervisor, Rafik Goubran Carleton University September 2009 ii Abstract This thesis presents the design and prototype testing of a novel medical instrument designed to measure changes in to acoustic transmission properties of lung tissue. Since tissue acoustic transmission is largely determined by the distribution of lung fluid and lung tissue density, this instrument has potential applications for monitoring and diagnosis of patients with such obstructive lung diseases which are associated with accumulation of lung fluid and collapse of lung tissue. The apparatus consists of an array of 4 electronic stethoscopes linked together via a fully adjustable harness. A White Gaussian Noise (WGN) input sound is injected into the mouth via a modified speaker and measured on the surface of the chest using the array of stethoscopes. Data were analysed using the Normalized Least Mean Squares (NLMS) adaptive filtering algorithm to develop a transfer function based on the propagation characteristics of the injected signal. This transfer function is then analysed to determine the frequency response and the propagation delay at each stethoscope. The system was calibrated to account for delays in the signal acquisition equipment and verified using a chest phantom model. System non-linearites were analysed and determined to be sufficiently small to justify the linear model. Phantom test results show that as the volume of fluid in the lungs increases, the sound propagation delay decreases. In-vivo results were measured on healthy volunteers and show comparable results to the lung phantom with no volume of water injected and that the instrument can detect sound propagation delay variations with changes in posture. Based on these results, this instrument is able to measure parameters of the lungs including propagation delay and frequency/impulse responses, which show useful correspondence to known physiological changes. iii Acknowledgements I would like to thank the following people for their support and encouragement in this project: Dr. Andy Adler, Dr. Rafik Goubran, Michael Mulligan, Gloria Mulligan, and Kirk Mulligan. Without these individuals, I would not have had the inspiration or the determination to complete a successful Master’s Thesis. I would also like to acknowledge the Natural Sciences and Engineering Research Council (NSERC) for partially funding this project. iv Table of Contents Abstract .............................................................................................................................. iii Acknowledgements ............................................................................................................ iv Table of Contents ................................................................................................................ v List of Tables ..................................................................................................................... ix List of Figures ..................................................................................................................... x List of Abbreviations ....................................................................................................... xiv Chapter 1 – Introduction ..................................................................................................... 1 1.1 Overview .............................................................................................................. 1 1.2 Problem Statement ............................................................................................... 3 1.3 Thesis Objectives ................................................................................................. 4 1.4 Thesis Contributions ............................................................................................ 6 1.5 Thesis Organization.............................................................................................. 8 Chapter 2 – Background Review ...................................................................................... 10 2.1 Overview of Human Lung Anatomy ...................................................................... 10 2.1.1 Obstructive Lung Diseases .............................................................................. 12 2.2 Lung Sounds ........................................................................................................... 16 2.2.1 Acoustical Properties of the Lungs and Thorax ............................................... 17 2.3 The Stethoscope ...................................................................................................... 18 2.4 Electronic Stethoscope Arrays ................................................................................ 21 2.5 Adaptive Filters ....................................................................................................... 22 2.6 Lung Models ........................................................................................................... 25 v 2.7 Breathing Manoeuvres ............................................................................................ 28 2.7.1 Pursed Lip Breathing Technique ..................................................................... 28 2.7.2 Diaphragmatic Breathing ................................................................................. 28 2.8 Current Lung Monitoring Technologies ................................................................. 29 2.8.1 Positron Emission Tomography (PET) ............................................................ 29 2.8.2 Magnetic Resonance Imaging (MRI) ............................................................... 30 2.8.3 Electrical Impedance Tomography (EIT) ........................................................ 30 2.8.4 Acoustic Imaging of the Human Chest ............................................................ 30 Chapter 3 – Measurement Apparatus Setup...................................................................... 33 3.1 Data Acquisition ..................................................................................................... 34 3.2 Data Processing ....................................................................................................... 40 3.2.1 Instrument Calibration ..................................................................................... 40 3.2.2 Algorithm Implementation............................................................................... 46 3.3 Chapter Summary ................................................................................................... 48 Chapter 4 – Simulation Results......................................................................................... 48 4.1 Input Signal Selection ............................................................................................. 48 4.2 Adaptive Filter Parameter Selection ....................................................................... 49 4.3 Verification with Adaptive Filter Simulator and FFT ............................................ 50 4.4 Chapter Summary ................................................................................................... 57 Chapter 5 – In Vitro Chest Phantom Experiments............................................................ 58 5.1 Open Air Column Phantom .................................................................................... 58 5.1.1 Description ....................................................................................................... 58 5.1.2 Results .............................................................................................................. 59 vi 5.1.3 Model Limitations ............................................................................................ 60 5.2 Plastic Bucket Phantom .......................................................................................... 61 5.2.1 Description ....................................................................................................... 61 5.2.2 Results .............................................................................................................. 63 5.2.3 Model Limitations ............................................................................................ 63 5.3 Chest Phantom ........................................................................................................ 63 5.3.1 Description ....................................................................................................... 63 5.3.2 Results .............................................................................................................. 66 5.3.3 Model Limitations ............................................................................................ 68 5.4 Chapter Summary ................................................................................................... 69 Chapter 6 – In Vivo Experiments ..................................................................................... 70 6.1 Experimental Protocol ............................................................................................ 70 6.2 In Vivo Results – Patient Sitting ............................................................................. 71 6.3 In Vivo Results – Patient Lying on Back................................................................ 72 6.4 In Vivo Results – Lying on Right Side ................................................................... 73 6.5 In Vivo Results – Lying on Left Side .................................................................... 76 6.6 In Vivo Results – Flat on Stomach ......................................................................... 78 6.7 In Vivo Results – All Stethoscopes ........................................................................ 79 6.8 Chapter Summary ................................................................................................... 87 Chapter 7 – Non-Linearities within the System ................................................................ 84 7.1 – Non-Linear Systems............................................................................................. 84 7.2 – Non-Linearities within the System Apparatus ..................................................... 84 7.3 – Chapter Summary ................................................................................................ 92 vii Chapter 8 – Conclusions and Future Work ....................................................................... 93 References ......................................................................................................................... 95 viii List of Tables Table 1 - Acoustical Impedance for Various Organs within the Thorax (Lundqvist, 2008) ... 17 Table 2 - Features of the Electronic Stethoscope (DS32A Digital Electronic Stethoscope) ... 21 Table 3 - Materials used to Construct the Stethoscope Array Harness.................................... 36 Table 4 - Components used to construct the sound emitting and recording apparatus ............ 39 Table 5 - Experimental Results that Compare Sound Propagation Delay Calculations between Three Algorithms ....................................................................................................... 60 Table 6 - Materials used to build the Plastic Bucket Model .................................................... 61 ix List of Figures Figure 1 - The Human Respiratory System (Reproduced from Illustration of Human Respiratory System, 2008) ................................................................................................ 12 Figure 2 - X-Rays demonstrating a patient with healthy lungs (A) and a patient diagnosed with pneumonia (B). An accumulation of mucus (shown in white) in the patient’s right lung can be observed. ........................................................................................................ 15 Figure 3 - Anterior and Posterior View of the Human Thorax with Auscultation Points (1- 7) (Reproduced from Lung Sound Auscultation Trainer, 2008). ...................................... 16 Figure 4 - Mechanical Stethoscope Frequency Response (Reproduced from Webster, 1998) ................................................................................................................................. 20 Figure 7 - Example Lung Model (Reproduced from (McKee, 2004)) ............................. 26 Figure 8 - Example Lung Model (Reproduced from (McKee, 2004)) ............................. 27 Figure 9 - Sketch of Measurement Apparatus and Setup on a Patient.............................. 34 Figure 10 - Fully Adjustable Stethoscope Array Harness Attached to a Human Participant ........................................................................................................................................... 37 Figure 12 - Actual Off the Shelf Components of the Medical Instrument ....................... 39 Figure 13 - Medical Instrument Block Diagram of Off the Shelf Components with Internal Components ......................................................................................................... 41 Figure 14 - Face Panel of Firepod Preamplifier. Boxes Show Channels 1 and 2 of the Preamplifier....................................................................................................................... 42 Figure 15 - Detecting the Delay of the Pre-Amplifier ...................................................... 42 Figure 16 - NLMS Coefficients upon Convergence of the Filter ..................................... 43 x
Description: