ebook img

Monitoring Pollen Counts and Pollen Allergy Index Using Satellite Observations in East Coast of PDF

90 Pages·2017·1.73 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Monitoring Pollen Counts and Pollen Allergy Index Using Satellite Observations in East Coast of

SSoouutthh DDaakkoottaa SSttaattee UUnniivveerrssiittyy OOppeenn PPRRAAIIRRIIEE:: OOppeenn PPuubblliicc RReesseeaarrcchh AAcccceessss IInnssttiittuuttiioonnaall RReeppoossiittoorryy aanndd IInnffoorrmmaattiioonn EExxcchhaannggee Electronic Theses and Dissertations 2017 MMoonniittoorriinngg PPoolllleenn CCoouunnttss aanndd PPoolllleenn AAlllleerrggyy IInnddeexx UUssiinngg SSaatteelllliittee OObbsseerrvvaattiioonnss iinn EEaasstt CCooaasstt ooff tthhee UUnniitteedd SSttaatteess Murat Cagatay Kececi South Dakota State University Follow this and additional works at: https://openprairie.sdstate.edu/etd Part of the Allergy and Immunology Commons, Geographic Information Sciences Commons, and the Remote Sensing Commons RReeccoommmmeennddeedd CCiittaattiioonn Kececi, Murat Cagatay, "Monitoring Pollen Counts and Pollen Allergy Index Using Satellite Observations in East Coast of the United States" (2017). Electronic Theses and Dissertations. 1694. https://openprairie.sdstate.edu/etd/1694 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. MONITORING POLLEN COUNTS AND POLLEN ALLERGY INDEX USING SATELLITE OBSERVATIONS IN EAST COAST OF THE UNITED STATES BY MURAT CAGATAY KECECI A thesis submitted in partial fulfillment of the requirements for the Master of Science Major in Geography South Dakota State University 2017 iii ACKNOWLEDGEMENTS First, I would like to express sincere gratitude to my thesis advisor, Dr. Xiaoayng Zhang, for his constant guidance and encouragement in the way of achieving my goals and elaboration of my thesis research. Also, I would like to thank my committee members, Dr. Evren Celik Wiltse, Dr. Jamie Spinney, and Dr. Bob Watrel for the support in progressing and evaluating of my thesis. In addition to these, I would like to thank to Dr. Lingling Liu for helping on EVI2 data and Dr. Dong Yan for helping on precipitation data from TRMM. Without the financial support of Ministry of Food, Agriculture and Livestock and Ministry of National Education of Republic of Turkey which offered me a great scholarship to do graduate studies, this work and my dreams would not have been possibly persuaded. I would like to express my heartfelt gratitude to the crew of these ministries and Office of Education Attaché to The Turkish Consulate General in New York for interest and help before/during my graduate studies. I would also like to a lot of thanks to one of the my best friends, Mehmet Ozturk, for his encouragement and moral support which made me stronger and my studies very enjoyable, and thanks to Dinesh Shrestha and Atilla Polat for their continuous support. In addition, I would like to thanks to my family including my father, mother, sister, and mother’s brother for all their supports and sacrifices. Moreover, I would like to big thanks to one of the my oldest and best friends, Burak Karatas, for his moral support in every level of my life. iv TABLE OF CONTENTS LIST OF ABBREVATIONS ............................................................................................. vi LIST OF FIGURES ........................................................................................................... ix LIST OF TABLES ...............................................................................................................x ABSTRACT ....................................................................................................................... xi CHAPTER 1: INTRODUCTION ........................................................................................1 1.1. Problem Statement and Description ......................................................................1 1.2. Thesis Statement and Research Objectives ...........................................................3 CHAPTER 2: LITERATURE REVIEW .............................................................................5 2.1. Pollen ........................................................................................................................5 2.2. Factors Affecting Pollen Dispersal .......................................................................6 2.2.1. Environment .................................................................................................... 6 2.2.2. Human-induced factors.................................................................................... 7 2.2.3. Vegetation ........................................................................................................ 8 2.2.4. Topography ....................................................................................................... 9 2.3. Pollen Allergy and Measurements ........................................................................9 2.3.1. Remote Sensing and Neural Network ........................................................... 12 2.3.1.1. Remote Sensing ............................................................................................ 12 v 2.3.1.2. Neural Network ............................................................................................ 15 CHAPTER 3: FRAMING THE PROBLEM AND THEORY ..........................................18 3.1. Framing the Problem ...........................................................................................18 3.2. Theory ................................................................................................................19 CHAPTER 4: METHOD ...................................................................................................23 4.1. Study Area ...........................................................................................................23 4.2. Data Collection and Their Descriptions .................................................................27 4.3. Neural Network Analyses ...................................................................................27 4.3.1. Processing Short Term Pollen Allergy Index ............................................. 30 4.3.2. Processing Long Term Pollen Count Data.................................................. 32 CHAPTER 5: RESULTS AND DISCUSSION .................................................................35 5.1. Short Term Analysis ...........................................................................................35 5.2. Long term Analysis .............................................................................................44 CHAPTER 6: CONCLUSION ..........................................................................................48 APPENDICES ...................................................................................................................50 Appendix 1: Table of the All Short-Term Results .........................................................50 Appendix 2: Table of the All Long-Term Results .........................................................58 Appendix 3: Distributions of Long-Term Results in time .............................................59 REFERENCES ..................................................................................................................62 vi LIST OF ABBREVATIONS AAAAI: American Academy of Allergy Asthma and Immunology ANN: Artificial Neural Network ARIMA: Autoregressive Integrated Moving Average AVHRR: Advance Very High-Resolution Radiometer CDC: The Center of Disease Control CT: Connecticut State DC: District of Columbia State DE: Delaware State EVI: Enhance Vegetation Index EVI2: Two-band Enhance Vegetation Index FL: Florida State GA: Georgia State HDM: House Dust Mites HPLM: Hybrid Piecewise Logistic Model ºK: Kelvin Degree LSP: Land Surface Phenology LST: Land Surface Temperature vii MA: Massachusetts State ME: Maine State MD: Maryland State MODIS: Moderate-Resolution Imaging Radiometer MSE: Mean Square Error NDVI: Normalized Difference Vegetation Index NC: North Carolina State NCSU: North Carolina State University NH: New Hampshire State NIR: Near Infrared NJ: New Jersey State NY: New York State NYC: New York City OK: Oklahoma State RI: Rhode Island State RMSE: Root Mean Square Error SC: South Carolina State TRMM: Tropical Rainfall Measurement Mission viii US: United States USD: United States Dollar VA: Virginia State ix LIST OF FIGURES Figure 1: Map of Study Area for Eastern Coast of the United States ................................24 Figure 2: A typical feed forward neural network (Zhang 1997) ........................................29 Figure 3: Process of the Short Term Neural Network Analysis ........................................31 Figure 4: The Process of Neural Network Analysis for long term data .............................34 Figure 5: Temporal variation of variables. (A) Pollen Allergy Index, (B) land surface temperature, (C) EVI2, and (D) rainfall in time for Adirondack, NY and Gainesville, FL in Adirondack, NY and Gainesville, FL ......................................37 Figure 6: Interactions of variables for Adirondack, NY (rainfall, EVI2, land surface temperature (LST), and pollen allergy index). .......................................................39 Figure 7: Linear regression between actual and predicted pollen allergy index for Adirondack, NY (A) and Gainesville, FL (B) .......................................................41 Figure 8: Spatial variation of correlation (R2) between actual and predicted pollen allergy index in Eastern Coast of the United States ...........................................................43 Figure 9: Correlation between long term variables of Washington, DC ...........................45 Figure 10. Temporal variation in actual and predicted pollen counts (2003) for NYC, NY ......................................................................................................................................46 Figure 11. Temporal variation in actual and predicted pollen counts (2002) for Washington, DC .....................................................................................................47

Description:
members, Dr. Evren Celik Wiltse, Dr. Jamie Spinney, and Dr. Bob Watrel for the support in progressing and evaluating of my 9. Table 1: Type of Allergens by Species Source: Right Diagnosis from Healthgrades. Tree Pollen. Allergies. Weed Pollen. Allergies. Grass Pollen. Allergies. Other Pollen.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.