ebook img

monitoring depth of anesthesia with electroencephalogram PDF

120 Pages·2008·1.23 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview monitoring depth of anesthesia with electroencephalogram

TKK Dissertations 114 Espoo 2008 MONITORING DEPTH OF ANESTHESIA WITH ELECTROENCEPHALOGRAM: METHODS AND PERFORMANCE EVALUATION Doctoral Dissertation Mika Särkelä Helsinki University of Technology Faculty of Information and Natural Sciences Department of Biomedical Engineering and Computational Science TKK Dissertations 114 Espoo 2008 MONITORING DEPTH OF ANESTHESIA WITH ELECTROENCEPHALOGRAM: METHODS AND PERFORMANCE EVALUATION Doctoral Dissertation Mika Särkelä Dissertation for the degree of Doctor of Science in Technology to be presented with due permission of the Faculty of Information and Natural Sciences for public examination and debate in Auditorium TU1 at Helsinki University of Technology (Espoo, Finland) on the 18th of April, 2008, at 12 noon. Helsinki University of Technology Faculty of Information and Natural Sciences Department of Biomedical Engineering and Computational Science Teknillinen korkeakoulu Informaatio- ja luonnontieteiden tiedekunta Lääketieteellisen tekniikan ja laskennallisen tieteen laitos Distribution: Helsinki University of Technology Faculty of Information and Natural Sciences Department of Biomedical Engineering and Computational Science P.O. Box 3310 FI - 02015 TKK FINLAND URL: http://www.becs.tkk.fi/ Tel. +358-9-451 3172 Fax +358-9-451 3182 E-mail: [email protected] © 2008 Mika Särkelä ISBN 978-951-22-9288-2 ISBN 978-951-22-9289-9 (PDF) ISSN 1795-2239 ISSN 1795-4584 (PDF) URL: http://lib.tkk.fi/Diss/2008/isbn9789512292899/ TKK-DISS-2451 Picaset Oy Helsinki 2008 AB ABSTRACTOFDOCTORALDISSERTATION HELSINKI UNIVERSITY OF TECHNOLOGY P.O.BOX1000,FI-02015TKK http://www.tkk.fi Author MikaSärkelä Nameofthedissertation Monitoringdepthofanesthesiawithelectroencephalogram: Methodsandperformanceevaluation Manuscriptsubmitted Dec. 11,2007 Manuscriptrevised Mar. 10,2008 Dateofthedefence Apr. 18,2008 Monograph X Articledissertation(summary+originalarticles) Faculty FacultyofInformationandNaturalSciences Department DepartmentofBiomedicalEngineeringandComputationalScience Fieldofresearch BiomedicalEngineering Opponent(s) ProfessorGuyDumont,UniversityofBritishColumbia Supervisor ProfessorPekkaMeriläinen Instructor HannaViertiö-Oja,D.Sc. (Tech.) Abstract Inmonitoringdepthofanesthesia,useofelectroencephalogram(EEG)signaldatahelpstopreventintraoperative awarenessandreducesthecostsofanesthesia. Moderndepth-of-anesthesiamonitorsusefrontalEEGsignaltoderive anindexvalue,whichdecreasesmonotonicallywithincreasinganestheticdruglevels. Inthisstudy, electroencephalogramsignalprocessingmethodsfordepth-of-anesthesiamonitoringweredeveloped. Thefirstaimwastodevelopamethodforburstsuppressiondetectionandintegrateitintotheanestheticdepthmonitor. Accuratedetectionofburstsuppressionimprovestheaccuracyofdepth-of-anesthesiamonitoringatdeeplevelsof anesthesia. Themethoddevelopedutilizesanonlinearenergyoperatorandisbasedonadaptivesegmentation. The developedmonitorhasbeenprovenaccurateinseveralscientificstudies. Asecondaimwastodevelopadepth-of-anesthesiamonitorthatutilizesbothcorticalandsubcorticalinformationand isapplicablewithmostcommonlyusedanesthetics. ThemethoddevelopedisbasedonthespectralentropyofEEG andfacialelectromyogram(EMG)signals. Inthemethod,twospectralentropyvariablesarederived,aimingto differentiatethecorticalstateofthepatientandsubcorticalresponsesduringsurgery. Theconcepthasbeenconfirmed inthescientificstudiesconductedduringsurgery. Anotheraimwastodevelopamethodformonitoringepileptiformactivityduringanesthesia. Themethoddevelopedis basedonanovelEEG-derivedquantity,waveletsubbandentropy(WSE),whichfollowedthetimeevolutionof epileptiformactivityinanesthesiawithpredictionprobabilityof0.8andrecognizedmisleadingreadingsofthe depth-of-anesthesiamonitorduringepileptiformactivitywithevent-sensitivityof97%. Thefourthaimwastoinvestigatethemonitoringtechniquedeveloped,calledEntropy,inS-ketamineanesthesiaandin dexmedetomidinesedation. InS-ketamineanesthesia,high-frequencyEEGoscillationsturnedouttobethereasonfor thehighentropyvaluesseendespitedeepanesthesia. Indexmedetomidinesedation,Entropyprovedarapidindicator oftransitionphasesfromconsciousandunconsciousstates. Keywords anesthesia,burstsuppression,EEG,entropy,wavelet ISBN(printed) 978-951-22-9288-2 ISSN(printed) 1795-2239 ISBN(pdf) 978-951-22-9289-9 ISSN(pdf) 1795-4584 Language English Numberofpages 118+57(app) Publisher DepartmentofBiomedicalEngineeringandComputationalScience,HelsinkiUniversityofTechnology Printdistribution DepartmentofBiomedicalEngineeringandComputationalScience X Thedissertationcanbereadathttp://lib.tkk.fi/Diss/2008/isbn9789512292899/ AB VÄITÖSKIRJANTIIVISTELMÄ TEKNILLINENKORKEAKOULU PL1000,02015TKK http://www.tkk.fi Tekijä MikaSärkelä Väitöskirjannimi Anestesiansyvyydenmonitoroiminenaivosähkökäyränavulla: Menetelmätsekämenetelmiensuorituskyvynarviointi Käsikirjoituksenpäivämäärä 11.12.2007 Korjatunkäsikirjoituksenpäivämäärä 10.3.2008 Väitöstilaisuudenajankohta 18.4.2008 Monografia X Yhdistelmäväitöskirja(yhteenveto+erillisartikkelit) Tiedekunta Informaatio-jaluonnontieteidentiedekunta Laitos Lääketieteellisentekniikanjalaskennallisentieteenlaitos Tutkimusala Lääketieteellinentekniikka Vastaväittäjä(t) ProfessoriGuyDumont,UniversityofBritishColumbia Työnvalvoja ProfessoriPekkaMeriläinen Työnohjaaja TkTHannaViertiö-Oja Tiivistelmä Anestesiansyvyyttämonitoroitaessaaivosähkökäyrä(EEG)auttaavälttämäänpotilaankirurgianaikaisentietoisuuden tunteensekäpienentämäänanestesiankustannuksia. Anestesiansyvyydenmonitoritlaskevatotsaltamitatusta EEG-signaalistanumeroarvon,jokapieneneemonotonisestianestesialääkityksenkasvaessa. Tässätyössäkehitettiin EEG-signaalinkäsittelymenetelmiäanestesiansyvyydenmonitorointiin. Työnensimmäinentavoiteolikehittäämenetelmäpurskevaimentumanilmaisemiseksijayhdistäätämäosaksi anestesiansyvyydenmonitoria,parantaenmonitoroinnintarkkuuttasyvässäanestesiassa. Kehitettymenetelmä perustuuadaptiiviseensegmentointiin,jossahyödynnetäänepälineaaristaenergiaoperaattoria. Kehitettymonitorion osoittautunuttarkaksimenetelmäksilukuisissatieteellisissätutkimuksissa. Toinentavoiteolikehittäämenetelmäanestesiansyvyydenmonitorointiin,jokahyödyntääsekäaivokuoreltaperäisin olevaaEEG-signaalia,ettäosittainaivorungostaperäisinolevaakasvolihastenlihassähkökäyrää(EMG).Kehitetty menetelmäperustuuEEG-jaEMG-signaaleistalaskettavaanspektraaliseenentropiaan. Menetelmätuottaakaksi muuttujaa,joidenavullapyritäänerottamaanpotilaanaivokuorentilasekäkirurgianaiheuttamataivorunkovasteet. Tieteelisettutkimuksetovatosoittaneetkonseptintoimivuudenkirurgianaikaiseenmonitorointiin. Kolmastavoiteolikehittäämenetelmäanestesianaikaisenepileptiformisenaivotoiminnanmonitorointiin. Työssä kehitettiintäysinuusiEEG-signaalistajohdettusuure;aallokemuunnoksenosakaistanentropia(WSE).WSEkykeni seuraamanepileptiformisentoiminnankehitystäennustetodennäköisyydellä0,8sekätunnisti97%:stitämän aiheuttamatharhaanjohtavattapauksetanestesiansyvyydenmonitorinlukemissa. LisäksityössäarvioitiinkehitetynEntropia-monitorinsuorituskykyäS-ketamiinianestesiassasekä deksmedetomidiinisedaatiossa. S-ketamiinianestesiassakorkeataajuisetEEG-oskillaatiotolivatsyynäkorkeille Entropia-arvoillehuolimattasyvästäanestesiasta. DeksmedetomidiinisedaatiossaEntropia-monitorikykeni seuraamaannopeitamuutoksiatajuisuudenjatajuttomuudenvälillä. Asiasanat aalloke,anestesia,EEG,entropia,purskevaimentuma ISBN(painettu) 978-951-22-9288-2 ISSN(painettu) 1795-2239 ISBN(pdf) 978-951-22-9289-9 ISSN(pdf) 1795-4584 Kieli englanti Sivumäärä 118+57(liitteet) Julkaisija Lääketieteellisentekniikanjalaskennallisentieteenlaitos,Teknillinenkorkeakoulu Painetunväitöskirjanjakelu Lääketieteellisentekniikanjalaskennallisentieteenlaitos X Luettavissaverkossaosoitteessahttp://lib.tkk.fi/Diss//2008/isbn9789512292899/ 7 Preface This thesis is a result of a long journey. The work has been mostly carried out in Research Unit of GE Healthcare Finland Oy during 2000-07. The first steps of this work was already taken in Department of Anesthesiology, Oulu University Hospital, Finland in 1999-2000. I wish to express my gratitude to professor Pekka Meril¨ainen for providing me the opportunityforthisthesisworkandforhissupportduringalltheseyears. Pekkahas been acting as my manager in GE Healthcare as well as my supervisor in Helsinki University of Technology. Hanna Vierti¨o-Oja, D.Sc. (Tech.), is appreciated of in- struction she has offered in the scientific field of anesthetic depth monitoring as well as significant help in the final steps of this thesis. Pre-examiners professor Pasi KarjalainenanddocentIlkkaKorhonenareappreciatedfortheirvaluablecomments. From the years in Oulu, professor Tapio Sepp¨anen is acknowledged for introducing me the interesting world of signal processing and docent Ville J¨antti for familiarizing me with the odd-looking waveforms called EEG. I am grateful to professor Seppo Alahuhta, head of Department of Anesthesiology for his positive attitude toward this thesis project. Anne Vakkuri, M.D., Ph.D., is appreciated for her significant role in the develop- ment of Entropy monitor as well as scientific advises considering the publication of wavelet subband entropy. Professor Arvi Yli-Hankala is acknowledged for his pioneering work in the field of anesthesia EEG that, among others results, led to the development of Entropy monitor and wavelet subband entropy. Docent Mark van Gils and mr. Miikka Ermes, M.Sc. (Tech.), both from VTT Technical Research Centre of Finlandare appreciatedfor the co-operation inthe development of wavelet subband entropy. Part of this thesis work has been conducted in collaboration with Turku PET Cen- tre and Turku University Hospital, Finland. It was pleasure to work with this enthusiastic research group that has offered in-depth understanding of anesthesia mechanisms. Especially, I wish to express my gratitude to professor Harry Scheinin, docent Satu J¨a¨askel¨ainen, and mrs. Anu Maksimow, M.D., Ph.D. Anu has a major contribution for this thesis as being the first author of two publications. 8 I express my special gratitude to all 30 co-authors of the five publications consti- tuting this thesis. This work is a result of several projects carried out in industry, research institutes, central hospital, and in four of the total five university hospitals in Finland. It has been a rewarding experience to work with all these people each representing top knowledge in their own speciality. My colleagues in GE Healthcare and Oulu University Hospital are appreciated for their support during this almost endless thesis project. Especially, I wish to thank mr. Matti Huiku, D.Sc. (Tech.), for his guidance and encouragement during the last few years. Mr. Petteri Lapinlampi, M.Sc. (Tech.), is acknowledged for guiding me in the practicality of Helsinki University of Technology and support with LATEX typesetting. I wish to thank my parents, Anja and Sakari S¨arkel¨a for their support. Finally, I would like to thank my dear Sirkku for her love, patience, and understanding. Helsinki, 10th of March, 2008 9 Contents Preface 7 Contents 9 List of Publications 11 Author’s contribution 13 List of Abbreviations 15 List of Symbols 17 List of Figures 19 List of Tables 21 1 Introduction 23 1.1 Burst suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.2 Facial electromyographic activity . . . . . . . . . . . . . . . . . . . 26 1.3 Epileptiform activity . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.4 Anesthetic drugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.5 Aims of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2 Electroencephalogram signal processing in anesthesia 33 2.1 Time-domain analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.1.1 Nonlinear energy operator . . . . . . . . . . . . . . . . . . . 34 2.1.2 Burst suppression detection (I, II) . . . . . . . . . . . . . . 35 2.2 Frequency-domain analysis . . . . . . . . . . . . . . . . . . . . . . . 40 2.2.1 Spectrum estimation . . . . . . . . . . . . . . . . . . . . . . 40 2.2.2 Classical spectral band powers . . . . . . . . . . . . . . . . . 42 2.2.3 Spectral edge frequencies . . . . . . . . . . . . . . . . . . . . 43 2.2.4 Canonical univariate parameter . . . . . . . . . . . . . . . . 44 2.2.5 Spectral entropy . . . . . . . . . . . . . . . . . . . . . . . . 46 2.2.6 Time-frequency balanced spectral entropy (II) . . . . . . . . 47 2.2.7 Bispectral analysis . . . . . . . . . . . . . . . . . . . . . . . 49 2.2.8 Bispectral Index . . . . . . . . . . . . . . . . . . . . . . . . 51

Description:
Apr 18, 2008 ment of Entropy monitor as well as scientific advises considering the publication of wavelet subband entropy. Professor Arvi Yli-Hankala is
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.