ebook img

Molecular Modeling of Geochemical Reactions An Introduction PDF

427 Pages·2016·17.713 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Molecular Modeling of Geochemical Reactions An Introduction

Molecular Modeling of Geochemical Reactions Dedication To seea World in agrain of sand… —William Blake To my wife, Doris, and son, Cody, who bringmuchjoy to my life. Molecular Modeling of Geochemical Reactions An Introduction Edited by JAMES D. KUBICKI University of Texas at El Paso, USA Thiseditionfirstpublished2016 ©2016JohnWiley&Sons,Ltd. RegisteredOffice JohnWiley&Sons,Ltd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UnitedKingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapplyforpermissiontoreusethe copyrightmaterialinthisbookpleaseseeourwebsiteatwww.wiley.com. TherightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewiththeCopyright,Designsand PatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyformorbyanymeans, electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbytheUKCopyright,DesignsandPatentsAct1988, withoutthepriorpermissionofthepublisher. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbeavailableinelectronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrandnamesandproductnamesused inthisbookaretradenames,servicemarks,trademarksorregisteredtrademarksoftheirrespectiveowners.Thepublisherisnotassociatedwith anyproductorvendormentionedinthisbook. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsinpreparingthisbook,theymake norepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisbookandspecificallydisclaimanyimplied warrantiesofmerchantabilityorfitnessforaparticularpurpose.Itissoldontheunderstandingthatthepublisherisnotengagedin renderingprofessionalservicesandneitherthepublishernortheauthorshallbeliablefordamagesarisingherefrom.Ifprofessionaladvice orotherexpertassistanceisrequired,theservicesofacompetentprofessionalshouldbesought. Theadviceandstrategiescontainedhereinmaynotbesuitableforeverysituation.Inviewofongoingresearch,equipmentmodifications, changesingovernmentalregulations,andtheconstantflowofinformationrelatingtotheuseofexperimentalreagents,equipment,anddevices, thereaderisurgedtoreviewandevaluatetheinformationprovidedinthepackageinsertorinstructionsforeachchemical,pieceofequipment, reagent,ordevicefor,amongotherthings,anychangesintheinstructionsorindicationofusageandforaddedwarningsandprecautions. ThefactthatanorganizationorWebsiteisreferredtointhisworkasacitationand/orapotentialsourceoffurtherinformationdoesnot meanthattheauthororthepublisherendorsestheinformationtheorganizationorWebsitemayprovideorrecommendationsitmaymake. Further,readersshouldbeawarethatInternetWebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthiswork waswrittenandwhenitisread.Nowarrantymaybecreatedorextendedbyanypromotionalstatementsforthiswork.Neitherthepublisher northeauthorshallbeliableforanydamagesarisingherefrom. LibraryofCongressCataloging-in-Publicationdataappliedfor ISBN:9781118845080 AcataloguerecordforthisbookisavailablefromtheBritishLibrary. Setin10/12ptTimesNewRomanbySPiGlobal,Pondicherry,India 1 2016 Contents List of Contributors xi Preface xiii 1 Introduction to the Theoryand Methods of Computational Chemistry 1 David M. Sherman 1.1 Introduction 1 1.2 Essentials ofQuantum Mechanics 2 1.2.1 The Schrödinger Equation 4 1.2.2 Fundamental Examples 4 1.3 Multielectronic Atoms 7 1.3.1 The Hartree and Hartree–Fock Approximations 7 1.3.2 Density Functional Theory 13 1.4 Bonding in Molecules and Solids 17 1.4.1 The Born–Oppenheimer Approximation 17 1.4.2 Basis Sets and theLinearCombinationof Atomic Orbital Approximation 18 1.4.3 Periodic BoundaryConditions 20 1.4.4 Nuclear Motions and Vibrational Modes 21 1.5 From Quantum Chemistry to Thermodynamics 22 1.5.1 Molecular Dynamics 24 1.6 Available Quantum Chemistry Codes and Their Applications 27 References 28 2 Force Field Application and Development 33 Marco Molinari,Andrey V. Brukhno, Stephen C.Parker, andDino Spagnoli 2.1 Introduction 33 2.2 Potential Forms 35 2.2.1 The Non-bonded Interactions 35 2.2.2 The Bonded Interactions 37 2.2.3 PolarisationEffects 37 2.2.4 Reactivity 39 2.2.5 Fundamentals of Coarse Graining 40 2.3 Fitting Procedure 42 2.3.1 Combining Rules BetweenUnlike Species 42 2.3.2 OptimisationProceduresfor All-Atom Force Fields 43 2.3.3 Deriving CG Force Fields 45 2.3.4 Accuracy and Limitations ofthe Fitting 47 2.3.5 Transferability 48 vi Contents 2.4 Force Field Libraries 48 2.4.1 General Force Fields 48 2.4.2 Force Field Libraries forOrganics: Biomolecules with Minerals 49 2.4.3 Potentials for theAqueous Environment 50 2.4.4 CurrentCGFF Potentials 51 2.4.5 Multi-scale Methodologies 53 2.5 Evolution of Force Fields for Selected Classes of Minerals 54 2.5.1 Calcium Carbonate 54 2.5.2 Clay Minerals 56 2.5.3 Hydroxides and Hydrates 60 2.5.4 Silicaand Silicates 60 2.5.5 Iron-Based Minerals 61 2.6 Concluding Remarks 63 References 64 3 Quantum-Mechanical Modeling of Minerals 77 AlessandroErba and Roberto Dovesi 3.1 Introduction 77 3.2 Theoretical Framework 79 3.2.1 Translation Invariance and Periodic BoundaryConditions 79 3.2.2 HF and KS Methods 80 3.2.3 BlochFunctions and Local BS 81 3.3 Structural Properties 82 3.3.1 P–V Relation Through Analytical Stress Tensor 83 3.3.2 P–V Relation Through Equation ofState 85 3.4 Elastic Properties 86 3.4.1 Evaluation of the Elastic Tensor 86 3.4.2 Elastic Tensor-Related Properties 89 3.4.3 Directional Seismic Wave Velocities and Elastic Anisotropy 89 3.5 Vibrational and Thermodynamic Properties 91 3.5.1 Solid-State Thermodynamics 93 3.6 Modeling Solid Solutions 95 3.7 Future Challenges 98 References 99 4 First Principles Estimation of Geochemically ImportantTransition MetalOxide Properties: Structure and Dynamics of the Bulk, Surface, and Mineral/Aqueous Fluid Interface 107 Ying Chen, Eric Bylaska, and John Weare 4.1 Introduction 107 4.2 Overview of theTheoretical Methods and Approximations Needed toPerform AIMD Calculations 109 4.3 Accuracy of Calculations for Observable Bulk Properties 113 4.3.1 BulkStructural Properties 113 4.3.2 BulkElectronic Structure Properties 118 4.4 Calculation of Surface Properties 123 4.4.1 Surface Structural Properties 123 Contents vii 4.4.2 Electronic Structurein the Surface Region 127 4.4.3 Water Adsorption on Surface 129 4.5 Simulations of theMineral–Water Interface 130 4.5.1 CPMD Simulations of the Vibrational Structureof the Hematite (012)–Water Interface 130 4.5.2 CPMD Simulations of Fe2+Species at the Mineral–Water Interface 132 4.6 Future Perspectives 134 Acknowledgments 134 Appendix 134 A.1 ShortIntroduction toPseudopotentials 135 A.1.1 The Spin Penalty Pseudopotential 137 A.1.2 Projected Density of States from Pseudo-Atomic Orbitals 138 A.2 Hubbard-Like Coulomb and Exchange (DFT+U) 138 A.3 Overviewof the PAW Method 139 References 143 5 ComputationalIsotope Geochemistry 151 James R.Rustad 5.1 A Brief Statement ofElectronic Structure Theoryand theElectronic Problem 152 5.2 The Vibrational Eigenvalue Problem 154 5.3 Isotope Exchange Equilibria 156 5.4 Qualitative Insights 159 5.5 Quantitative Estimates 160 5.6 Relationship to Empirical Estimates 169 5.7 Beyondthe Harmonic Approximation 171 5.8 Kinetic Isotope Effects 172 5.9 Summaryand Prognosis 172 Acknowledgments 173 References 173 6 Organic and Contaminant Geochemistry 177 Daniel Tunega, Martin H. Gerzabek,Georg Haberhauer,Hans Lischka, andAdelia J. A.Aquino 6.1 Introduction 177 6.1.1 Review Examples ofMolecular Modeling Applications in Organic and Contaminant Geochemistry 179 6.2 Molecular Modeling Methods 184 6.2.1 Molecular Mechanics: Brief Summary 184 6.2.2 Quantum Mechanics: Overview 187 6.2.3 Molecular Modeling Techniques: Summary 192 6.2.4 Models: Clusters, Periodic Systems, and Environmental Effects 195 6.3 Applications 196 6.3.1 Modeling of Surface Complexesof Polar Phenoxyacetic Acid-Based Herbicides with Iron Oxyhydroxidesand Clay Minerals 197 6.3.2 Modeling of Adsorption Processes of Polycyclic Aromatic Hydrocarbons on Iron Oxyhydroxides 217 viii Contents 6.3.3 Modeling of Interactions ofPolar and Nonpolar Contaminants in Organic Geochemical Environment 220 6.4 Perspectives and Future Challenges 227 Glossary 229 References 231 7 Petroleum Geochemistry 245 Qisheng Ma and Yongchun Tang 7.1 Introduction: Petroleum Geochemistryand Basin Modeling 245 7.2 TechnologyDevelopmentof the Petroleum Geochemistry 246 7.2.1 Thermal Maturity and Vitrinite Reflectance 246 7.2.2 Rock-Eval Pyrolysis 247 7.2.3 Kerogen Pyrolysis and GasChromatography Analysis 248 7.2.4 Kinetic Modeling of Kerogen Pyrolysis 249 7.2.5 Natural Gases and C/HIsotopes 253 7.3 ComputationalSimulations in Petroleum Geochemistry 253 7.3.1 Ab Initio Calculations of theUnimolecular C–C Bond Rapture 253 7.3.2 Quantum Mechanical Calculations on Natural Gas13C Isotopic Fractionation 256 7.3.3 Deuterium Isotope Fractionations of Natural Gas 258 7.3.4 Molecular Modeling ofthe 13C and D Doubly Substituted Methane Isotope 260 7.4 Summary 262 References 262 8 Mineral–Water Interaction 271 Marie-Pierre Gaigeot and Marialore Sulpizi 8.1 Introduction 271 8.2 Brief Review of AIMD Simulation Method 275 8.2.1 Ab Initio Molecular Dynamics and Density Functional Theory 275 8.3 Calculation of theSurface Acidity from Reversible Proton Insertion/Deletion 280 8.4 Theoretical Methodology for Vibrational Spectroscopyand Mode Assignments 282 8.5 Property Calculations from AIMD:Dipoles and Polarisabilities 284 8.6 Illustrationsfrom OurRecent Works 286 8.6.1 Organisation of Water at Silica–Water Interfaces: (0001) α-Quartz Versus Amorphous Silica 286 8.6.2 Organisation of Water at Alumina–Water Interface: (0001) α-Alumina Versus (101) Boehmite 291 8.6.3 How Surface Acidities Dictate the Interfacial WaterStructural Arrangement 293 8.6.4 VibrationalSpectroscopy at Oxide–Liquid Water Interfaces 295 8.6.5 Clay–Water Interface: Pyrophyllite and Calcium Silicate 299 8.7 Some Perspectives for Future Works 302 References 304 9 Biogeochemistry 311 Weilong Zhao, Zhijun Xu, and Nita Sahai 9.1 Introduction 311 9.1.1 Mineral–Water Interactions 313 9.1.2 Mineral–Organic Interactions 313 Contents ix 9.2 Challengesand Approaches to Computational Modeling of Biomineralization 314 9.2.1 Biominerals: Structure, Nucleation, and Growth 314 9.2.2 ConformationalSampling in ModelingBiomineralization 317 9.2.3 Force Field Benchmarking 324 9.2.4 Ab Initio MD and Hybrid QM/MMApproaches 325 9.3 Case Studies 326 9.3.1 Apatite 327 9.3.2 Calcite 331 9.4 Concluding Remarks and Future Perspectives 334 Acknowledgments 335 References 335 10 Vibrational Spectroscopy of Minerals Through Ab Initio Methods 341 Marco De LaPierre, Raffaella Demichelis, andRoberto Dovesi 10.1 Introduction 341 10.2 Theoretical Background and Methods 342 10.2.1 Calculation of Vibrational Frequencies 344 10.2.2 Splitting ofthe Longitudinal Optical (LO) and Transverse Optical (TO) Modes 346 10.2.3 Calculation of Infrared (IR) and Raman Peak Intensities and of the IR Dielectric Function 347 10.2.4 Estimation of the Anharmonic Constant for X–H Stretching Modes 349 10.2.5 Accuracy of Basis Set and Hamiltonian 350 10.3 Examples and Applications 352 10.3.1 Vibrational Properties ofCalcium and Magnesium Carbonates 353 10.3.2 A ComplexMineral: The IR Spectra of Ortho-enstatite 359 10.3.3 Treatment ofthe O─H Stretching Modes:The Vibrational Spectra of Brucite and Diaspore 360 10.4 Simulation of Vibrational Properties forCrystal Structure Determination 363 10.4.1 Proton Disorder in γ-AlOOH Boehmite 364 10.5 Future Challenges 368 Acknowledgements 368 References 368 11 Geochemical Kinetics via ComputationalChemistry 375 James D.Kubicki andKevin M. Rosso 11.1 Introduction 375 11.2 Methods 379 11.2.1 Potential Energy Surfaces 379 11.2.2 Choice of Solvation Methods 384 11.2.3 Activation Energies and Volumes 386 11.2.4 Transition States and Imaginary Frequencies 390 11.2.5 Rate Constants 391 11.2.6 Types of Reaction Mechanisms 393 11.3 Applications 394 11.3.1 Diffusion 394 11.3.2 Ligand Exchange Aqueous Complexes 395 11.3.3 Adsorption 396 x Contents 11.3.4 Dissolution 396 11.3.5 Nucleation 398 11.4 Future Challenges 399 11.4.1 FemtosecondSpectroscopy 399 11.4.2 H-Bonding 400 11.4.3 Roaming 400 11.4.4 Large-Scale Quantum Molecular Dynamics 401 11.4.5 Reactive Force Fields 401 References 403 Index 415

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.