ebook img

Molecular Gas at High Redshift PDF

0.14 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Molecular Gas at High Redshift

Astron.Nachr./AN999,No.88,789–794(2006)/DOIpleasesetDOI! Molecular Gas at High Redshift FabianWalter1,ChrisCarilli2&EmanueleDaddi3 1 MaxPlanckInstitutfu¨rAstronomie,AufdemHu¨gel71,69117Heidelberg,Germany 2 NationalRadioAstronomyObservartory,Socorro,NM87801,USA 3 LaboratoireAIM,CEASaclay,91191Gif-sur-YvetteCedex,France 1 1 Received30May2005,accepted11Nov2005 0 Publishedonlinelater 2 n Keywords earlyuniverse,galaxies:ISM,galaxies:highredshift,radiolines:ISM a Inordertounderstandgalaxyevolutionthroughcosmictimesitiscriticaltoderivethepropertiesofthemoleculargascon- J tentofgalaxies,i.e.thematerialoutofwhichstarsultimatelyform.Thelastdecadehasseenrapidprogressinthisarea, 0 withthedetectionofmassivemoleculargasreservoirsathighredshiftsinsubmillimeter–selectedgalaxiesandquasars.In 2 thelattercase,moleculargasreservoirshavebeenquantifiedouttoredshiftsz>6,i.e.towardstheendofcosmicreion- izationwhentheuniversewaslessthanoneGyrold.Therecentdiscoveryofmoleculargasinmorenormalgalaxieshave O] extendedthesestudiesfromthemostextremeobjectsintheunviverse(SFR∼1000M⊙yr−1;quasarsandsubmillimeter galaxies)tomore‘normal’ starformingsystemsat redshifts1.5–2.5(withSFR∼100M yr−1).However, detectingthe C ⊙ moleculargasreservoirsofhigh–redshiftgalaxiesthatonlyhavemoderatestarformationrates(∼10M yr−1,similarto . ⊙ h thefaintgalaxiesseenintheHubbleUltraDeepField)willlikelyhavetoawaitthecompletionofALMA. p - (cid:13)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim o r t s 1 Recent Progress inunderstanding Galaxy rate galaxies (LFIR ≥ 1011 L⊙) at z ∼ 2 (‘downsizing’, a Formation e.g.,LeFloc’hetal.2005,Smolcˇic´etal.2009).Anotherkey [ findingis thetightrelationbetweenthe starformationrate 1 andthestellarmassforstarforminggalaxiesuptoredshifts The last decade has seen dramatic advances in our under- v z∼3(e.g.Noeskeetal.2007;Elbazetal.2007;Daddietal. 2 standingofgalaxyformation.Cosmic geometry,the mass- 2 energycontentoftheUniverse,andtheinitialdensityfluc- 2007;Magdisetal.2010).High–redshiftstarforminggalax- 0 tuation spectrum, have been constrained to high accuracy ies are typically selected through optical/IR studies (e.g., 4 Steidel et al. 1999, Daddi et al. 2004, van Dokkum et al. (e.g., Spergel et al. 2007). Given the underlying distribu- . 1 tion of dark matter, the main challenge of galaxy forma- 2006) 0 tionstudiesistounderstandhowthebaryonsassembleinto Besides the star forminggalaxies, a populationof pas- 1 the observedUniverse.In this context,structure formation sivelyevolving,relativelymassive(stellarmasses∼1010to 1 : throughgravitationalinstabilitieshasbeencalculatedinde- 1011 M⊙) galaxies(‘redanddead’),havebeendetectedat v tailthroughnumericalstudies,andobservationallyverified z > 1,comprisingroughly50%ofthegalaxiesselectedin i X throughstudiesofgalaxydistributions(e.g.,Springeletal. near-IRsurveys(see,e.g.,reviewbyRenzini2006).These r 2006). The history of star formation, and the build up of galaxiesmustformthemajorityoftheirstarsquicklyateven a stellarmass,asafunctionofgalaxytypeandmass,arenow earlierepochs(e.g.,Wiklindetal.2008). constrainedouttothetail-endofcosmicreionization,within Lastly,substantialpopulationsofsupermassiveblackholes 1GyroftheBigBang,andpushingtowardfirstlightinthe andgalaxiesare nowbeingdetectedroutinelybackto first Universe(e.g.,Bouwensetal.2010). light and cosmic reionization (z ∼ 6.5). Populations in- Theprincipleresultsofthesestudiescanbesummarized clude normal star forming galaxies, such as the Ly-α se- asfollows.Thecomovingcosmicstarformationratedensity lected galaxies, with star formation rates of order 10M⊙ increasesbymorethananorderofmagnitudefromz ∼ 0 year−1(Taniguchietal.2005,Ouchietal.2009)aswellas to 1, peaks around z ∼ 2 to 3, and likely drops gradually quasarhostgalaxies,oftenwithstarformationratesthatare outtoz ∼8(e.g.,Hopkins&Beacom2006,Bouwensetal. 100 times higher (e.g., Wang et al 2008). The latter likely 2010).Thebuild-upofstellarmassfollowsthisevolution,as represent a major star formation epoch for very massive doesthetemporalintegral(forz<2,e.g.Ilbertetal.2010). galaxieswithin1GyroftheBigBang.Mostrecently,GRBs Theredshiftrangez ∼1.5to3hasbeencalledthe‘epochof areshowinggreatpotentialtoprobegalaxyformationoutto galaxyassembly’,whenabouthalfthestarsintheUniverse z >8(Tanviretal.2009,Salvaterraetal.2009). forminspheroidalgalaxies.Ithasbeenshownthatstarfor- Theseobservationshaveledtoanewmodelforgalaxy mationshiftssystematicallyfromlowerluminositygalaxies formation. As opposed to either cooling of virialized, hot (LFIR ∼ 1010 L⊙) at low redshift, to high star formation halogas,ormajor,gas-richmergers,thedominantmodeof (cid:13)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 790 Walter,Carilli&Daddi:MolecularGasatHighRedshift starformationduringtheepochofgalaxyassemblymaybe plotwouldjustbeareflectionofthemoleculargasdensity driven by cold mode accretion, or stream-fed galaxy for- historyoftheUniverse. mation (e.g., Keresˇ et al. 2005, Dekel et al. 2009). Simu- The stellar to gas mass density ratio: A related, and lationssuggestthatgasaccretioninearlymassivegalaxies similarlyfundamentalissueistocomparethestellarandgas occursalongcold streamsfromthe filamentaryintergalac- mass of galaxies versus redshift. Two extremes scenarios tic medium(IGM) thatnevershock-heat,butstreams onto canbeenvisioned.Atoneextreme,thegasbuildsuptolarge thegalaxyatclosetothefree-falltime.Thiscoolgasforms values (approaching 1011 M ), and then a dramatic star- ⊙ athick,turbulentrotatingdiskwhichveryefficientlyforms burstistriggeredvia,e.g.,amajorgasrichmerger,whenthe starsinafewgiantregionsinthedisk(e.g.,Bournaudetal. gasisrapidlyconvertedintostarsondynamicaltimescales 2007).Thestarformingregionsthenmigratetothegalaxy ∼ 108 years.At theotherextreme,a continuoussupplyof center via dynamical friction and viscosity, forming com- gascomesfromtheIGM,coolingintomolecularcloudsand pact stellar bulges. The process leads to relatively steady, formingstarsataratecomparabletothefree-fallrateofgas active (∼ 100 M⊙ year−1) star formationin galaxiesover ontothegalaxyover∼Gyrtimescales.Thislattercasecor- timescalesoforder1Gyr.Subsequentdrymergersatz <2 responds to the cold mode accretion model. This point is lead to continued total mass build up, and morphological currentlyaddressedbyanumberofobservationalprograms evolution,butlittlesubsequentstarformation(e.g.,Skelton thataimatstudyingstarforminggalaxiesatz∼2(Daddiet etal.2009,VanderWeletal.2009,Robainaetal.2010). al.2010a,2010b,Tacconietal.2010,Genzeletal.2010,as discussedinSec.4.3and4.4below). Moregenerally,thestudyofthecoolmoleculargasphase 2 Moleculargas:the key to testing galaxy in‘typical’highhigh–redshiftgalaxies(withSFR∼100M yr−1) ⊙ formationmodels providekeyinsightintotheprocessofgalaxyformationin anumberofways: While progress has been impressive, the model above is – A universal star formation law: The low order transi- based almost exclusivelyon opticaland near-IRstudiesof tions of CO provide the most direct means of measur- the stars, star formation,and ionized gas. There remains a ing the total molecular gas mass. These measurements majorgapinourunderstandingofgalaxyformation,namely, can then be compared to star formation rates to deter- observationsof the cool gas, the fuel for star formation in mine the evolution of the fundamental star formation galaxies. In essence, current studies probe the products of lawsrelatingcoolgasandstarformation.Isthereauni- the process of galaxy formation, but miss the source. Nu- versal relationship that governs the efficiency of con- merous observational and theoretical papers have pointed versionof moleculargasto starsin galaxiesof various outthecrucialneedforobservationsofthecoolmolecular types through cosmic time? What are the fundamental gas feeding star formationin galaxies (e.g., Dressler et al. physicalparametersbehindtherelationship?Forafirst 2009;Obreschkow&Rawlings2009). attempt to address this topic see Sections 4.3 and 4.4 The molecular gas density history of the Universe: below. Thekeytofuturestudiesofgalaxyformationistodetermine – Howdoestheratioofmoleculargastostellarmassevolve? theevolutionofthemoleculargasdensityoftheUniverse. Thisratioistypically<0.1inthenearbyUniverse,even Overthelasttwodecades,thestarformationhistoryofthe for gas rich galaxies such as the Milky Way. Observa- Universe(SFHU)plothasbeenperhapsthemostfundamen- tions of a few the sBzK, and BX/BM galaxiesprovide tal tool for studying galaxy formation. At the same time, evidence that this ratio may increase to > 1 at z ∼ 2 very detailed studies of star formation in nearby galaxies (Daddietal.2010a,Tacconietal.2010). havereachedtwocriticalconclusions.First, starformation – Galaxydynamicsandstarformation:Molecularlineob- relates closely with the molecular gas content, but has lit- servationsarethemostdirectmeansofstudyinggalaxy tlerelationtotheatomicneutralgascontent(e.g.,Bigielet dynamics.Arethesesystemsdominatedbyrotatingdisks, al.2009).Thisfactisverifiedathighz bythelackofevo- aspredictedbycoldmodeaccretion,ormajormergers? lution of the cosmic HI mass density, as determined from What is the relative magnitude of ordered motion vs. damped Lyα systems, over the same redshift range where turbulence?What are the stability criteria, and how do the star formation rate density is increasing by more than theycomparetothedistributionofstarformation? anorderofmagnitude(Prochaska&Wolfe2009).Second, – Blackhole–bulgemassrelation:Establishingagalaxy’s once moleculargasforms,it formsstars, to first order,ac- mass through molecular gas dynamics can be used to cordingtoastarformationlaw(e.g.,Kennicutt1998,Bigiel test the evolution of the black hole – bulge mass rela- etal.2009,Leroyetal.2009,Krumholzetal.2009,Daddi tion back to the first galaxies. Indeed, in many cases, etal.2010b,Genzeletal.2010).Inlow–densityenvironem- themolecularlineobservationsaretheonlymeanstoget nts, the general idea is that, once a giant molecular cloud galaxydynamicsforgalaxieswithopticallybrightAGN becomesself-gravitating,star formationproceedsvialocal (e.g., Walter et al. 2003, Shields et al. 2006, Riechers processesinherenttotheGMC.Iftheuniversalstarforma- et al. 2008, 2009). The local relation suggests that the tionlawweretoholdtohighredshift,thentheclassicSFHU formation of black holes and galaxies are closely tied, (cid:13)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.an-journal.org Astron.Nachr./AN(2006) 791 buttheoriginofthisrelationshipremainsamystery(see ulargasintheseobjects(>1010M ,i.e.comparabletothe ⊙ Sec.4.2). submillimetergalaxies,e.g.,Solomon&VandenBout2005, – ISMphysicsandchemistry:Detailedstudiesofthephys- Coppinetal.2008).Quiteremarkably,suchreservoirshave ical conditionsin the ISM of primevalgalaxies can be nowbeendetectedinasizablesampleofquasarsatredshift performed using numerous molecular line transitions, 6 and greater, i.e. at the end of cosmic reionization when includingexcitationstudiesofCO,observationsofdense theUniversewaslessthanoneGyrold(Walteretal.2003, gas tracers like CN, HCN and HCO+, and other key 2004,Bertoldietal.2003,Maiolinoetal.2007,Carillietal. astrochemicaltracers.Such observationsdeterminethe 2007,Wangetal.2010).Resolvedimagingofafewquasar temperature and density of the ISM, molecular abun- hosts (Walter et al. 2004, Riechers et al. 2008a, b, Riech- dances and the fraction of dense gas. To date, only a ersetal.2009)implythatthemoleculargasisextendedon few extreme high–redshiftsystems have been detected kpcscalesaroundthecentralblackhole.Itremainspuzzling inthesedensegastracers(e.g.VandenBoutetal.2003, howsuchamountsofcoldmoleculargas,richin CandO, Riechersetal.2006,2007a,2007b,Garcia–Burilloetal. can be distributedovermanykpcscales on short(few 100 2006) Myr)timescales. The high FIR luminosity of the quasars, in conjunc- tionwiththeirmassivemoleculargasreservoirsimplyhigh 3 Recent progress onmolecularlines star formation rates in the host galaxies of SFR > 1000 observations inearly galaxies M year−1.Thisfindingiscorroboratedbythedetectionof ⊙ [CII] emission in a quasar host at z=6.42 (Maiolino et al. 3.1 SubmillimeterGalaxies(SMGs) 2005, Walter et al. 2009). In fact, spatially resolved mea- Surveys at submm wavelengths have revealed highly ob- surementsof the [CII] emission were able to constrainthe scured,extremestarburstgalaxies(SFR>1000M year−1) sizeofthestarbursttobeemergingfromthecentral∼1.5kpc ⊙ athighredshift,theso–calledsubmillimetergalaxies(SMGs, ofthequasarhost.Thisimpliesextremelyhighstarforma- e.g.,Smailetal.2007,Blainetal.2002).Subsequentstud- tion rate surface densities (∼1000M⊙yr−1kpc−2), at the ieshavedetectedlargereservoirsofmoleculargasinthese maximumwhatisallowedtheoreticallybasedonEdington– systems (> 1010M ; e.g., Frayer et al. 1998, 1999, Gen- limitedstarformationofaradiation–pressure–supportedstar- ⊙ zeletal.2003,Greveetal.2005,Tacconietal.2006,2008, burst(Walteretal.2009a). Knudsenetal.2009,Ivisonetal.2010).Generalproperties The central black hole masses of the quasars that are oftheSMGsaresummarizedinthereviewbySolomon& currently detectable reach masses of many 109 M⊙. If the VandenBout(2005)andthedetectionstodatearesumma- local relation seen between the centralblack hole and sur- rizedinFigure1(asdiscussedinSec.4.3). roundingbulgemass(e.g.,Magorrianetal.1998,Ferrarese High–resolutionimagingofSMGsbyTacconietal.(2006, etal.2000,Gebhardtetal.2000)weretoholdatthesehigh 2008) have shown that their molecular gas reservoirs are redshifts,onewouldexpectbulgemassesoforder1012M⊙. compact,withamediandiameterof∼4kpc.Thismorphol- Suchhighmassesexceeddynamicalmassestimatesofafew ogy can be explained if these galaxies are the results of sources by more than an order of magnitude (Walter et al. mergers, in which the molecular gas settles in the centre 2004,Riechersetal.2008a,b,2009),whichinturnindicates of two interacting galaxies (leading to a starburst). Recent thatblackholesbuiltuptheirmassesmorequicklythanthe COimagingofoneofthemostdistantSMGssuggeststhat stellarbulges(atleastinsomequasars). cold mode accretion may also play a role in powering the ongoingstarformation(Carillietal.2010). 3.3 ‘Normal’starforminggalaxies Chapmanetal.(2005)haveshownthatthemedianred- shift of SMGs is z∼2.3 — the existence of a substantial Morerecently,majorprogresshasbeenmadeondetecting high–redshift(z>4)tail of the submillimetergalaxypopu- CO emission from more normal star forming galaxies at lationthathostmoleculargashasrecentlybeenestablished highz.Thesecomeintheformofnear-IRandcolorselected galaxy samples at z ∼ 1.5 to 3. The BzK color selection byanumberofstudies(Schinnereretal.2009,Daddietal. 2009a,2009b,Carillietal.2010,Coppinetal.2010). techniqueinparticularhasrevealedasampleofstarforming galaxiesatz ∼ 1.5to2.5,selectedatnear-IRwavelengths, WhilethestudyoftheseSMGshasopenedanewwin- with stellar massesinthe range1010 to 1011 M , andstar dowontheopticallyobscuredUniverseathighredshift,the ⊙ formationrates∼ 100M yr−1 (Daddietal.2004).These fact remains that these sources are rare, likely represent- ⊙ galaxieshaveaspacedensity> 10timesthosethesubmm ing the formation of the most massive galaxies in merger- galaxies. drivenhyper-starburstsat high redshift,with gas depletion timescales<0.1Gyr, Daddietal.(2008)showedthatstarformingBzKgalax- ies (sBzK) uniformly contain molecular gas reservoirs of comparable mass to the submm galaxies, and yet they are 3.2 Quasars forming stars at ∼10 times lower rates. This leads to high Likewise,surveysofmoleculargasinquasarhostgalaxies gas depletion times of up to ∼1 Gyr (see Fig. 1). Follow– haverevealedthepresenceofmassivereservoirsofmolec- up observations showed that massive gas reservoirs have www.an-journal.org (cid:13)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 792 Walter,Carilli&Daddi:MolecularGasatHighRedshift Fig.1 Comparison of molecular gas masses and total IR bolometric luminosities (taken from Daddi et al. 2010b)for all high–redshifted systems detected in CO to date: BzK galaxies (red filled circles; Daddi et al. 2010a), z ∼ 0.5 disk galaxies(redfilledtriangles;Salmietal.inprep.),z =1–2.3normalgalaxies(Tacconietal.2010;browncrosses),SMGs (blueemptysquares;Greveetal.2005,Frayeretal.2005,Daddietal.2009a,2009b),QSOs(greentriangles;Riecherset al. 2006,Solomon& VandenBout2005),localULIRGs (blackcrosses; Solomonet al. 1997),local spirals(black filled square: Leroy et al. 2009;black filled triangles: Wilson et al. 2009).The two nearby starbursts M82 and the nucleusof NGC253arealsoshown(seeDaddietal.2010bforreferences).Thesolidline(slopeof1.31intheleftpanel)isafitto localspiralsandBzKgalaxiesandthedottedlineisthesamerelationshiftedinnormalizationby1.1dex.Forguidance, twoverticallinesindicateSFR=2and200M yr−1intherightpanel.FormoredetailsseeDaddietal.(2010b). ⊙ beendetectedineachBzKgalaxythatwastargeted(Daddi mationefficiencies,andlowermoleculargasexcitation(e.g. et al. 2010a). The implied gas fractions are very high and Dannerbaueretal.2009,Aravenaetal.2010). the gas mass in these galaxies is comparable to or larger than the stellar mass, and the gas accounts for 50–65%of 3.4 DifferentStarFormationLawsatHighRedshift? the baryons with the galaxies’ half–light radius. New ob- servationsofanevenlargersampleof‘normal’starforming Thedetectionofmoleculargasinsystemsspanningawide galaxieshaveconfirmedand extendedthese findings(Tac- range of parametersnow allows one to investigatethe star conietal.2010). formationlaw(i.e.thedependenceofthestarformationrate Inafewcases,themoleculargasemissionintheseob- ontheavailablegas)athighredshift.InFigure1(left),we jects could even be spatially resolved (see Tacconi et al. showthesummaryplotofDaddietal.2010b.Herethein- 2010, Fig. 2, for a particularly striking example) allowing fraredluminosities(aproxyfortheSFR)isplottedasfunc- for a determination of the dynamical mass. A good con- tion of molecular gas mass (M ) of all high–redshiftob- H2 strainton thedynamicalmass also allowsoneto derivean jectsdetectedinCOtodate,includingsubmillimetergalax- independentmeasurementoftheCO–to–H2conversionfac- ies, quasars and BzK,BM/BX galaxies (see figure caption tor(asdoneintheBzKsamplebyDaddietal.2010a).The for references). As discussed in Daddi et al. (2010b), two interestingresultofsuchananalysisisthattheBzK’shave differentconversionfactors(toderiveM )havebeenused H2 aconversionfactorsimilartotheGalaxy,i.e.afactorof∼5 forthehighredhiftgalaxypopulationsinthisplot:theGalac- largerthanwhatisfoundinlocalULIRGs. tic one for the local spiral galaxies and the BzK/normal In conclusion these systems likely represent the major galaxiesatz∼1.5–2.5andalower‘ULIRG’conversionfac- starformationepochinearlymassivegalaxies(presumably torfortheULIRS,submillimetergalaxiesandquasars.Plot- drivenbycoldmodeaccretion).Inthecurrentpicturethese ted this way, there are two sequences emerging (each of galaxiesmayturnintopassivelyevolvinggalaxiesatz ∼1, which can be fitted with a power law of slope ∼1.3), one which may eventually turn into ‘red and dead’ cluster el- for the ‘starbursts’ (ULRIGS, SMGs and QSOs) and one liptical galaxies seen today. They are substantially differ- for the ‘disk’ galaxies. It should be stressed that the off- entfromthequasarandsubmillimeterpopulationdiscussed set in sequencesseen hereis notonlydue to the choiceof above in terms of their larger spatial sizes, lower star for- conversionfactors(e.g.,Fig.13inDaddietal.2010a).The (cid:13)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.an-journal.org Astron.Nachr./AN(2006) 793 righthandpanelshowsthesamedata,butthey–axisshows areobservedtocomparethevariousgalaxypopulations. the ratio of infraredluminosityto moleculargasmass(i.e. The EVLA will enable detailed studies of the ground thethegasdepletiontime)plottedasafunctionoftotalin- transitionsofCOuptohighredshift.Ontheotherhand fraredluminosity.Itisobviousfromthisfigurethatthegas ALMAwillenablestudiesofmoleculargastracersthat depletion times in the BzKs/normal galaxies are about an arecurrentlyverydifficulttoobserve(e.g.[CII],[NII], orderofmagnitudelongerthaninthesystemsthatarepre- [OIII] and other fine structure lines, e.g., Walter et al. sumablyundergoingmergers(suchas the ULIRGs, SMGs 2009b). andQSOs;seealsodiscussioninGenzeletal.2010).These Acknowledgements. Itisourpleasuretoacknowledgeourcollab- different star formation efficiencies appear to be regulated orators,inparticularFrankBertoldi,PierreCox,HelmutDanner- by the dynamical timescales of the systems (Daddi et al. bauer, Roberto Maiolino, Roberto Neri, Dominik Riechers, Ran 2010b,Genzeletal.2010). Wang,andAxelWeiss. These initial molecular gas observations of the differ- entpopulationofstarforminggalaxiesduringtheepochof References galaxyassemblypresentaremarkableopportunitytostudy the formation of normal galaxies at critical early epochs, Aravena,M.,etal.2010,ApJ,inpress whenmostoftheirstarsform,andwhenthedominantbaryon Bigiel, F., Leroy, A., Walter, F., Brinks, E., de Blok, W. J. G., massconstituentwasgas,ratherthanstars.Thegalaxiesare Madore,B.,&Thornley,M.D.2008,AJ,136,2846 typicallyextendedonscales∼ 1”intheoptical,providing Blain,A.W.,Smail,I.,Ivison,R.J.,Kneib,J.-P.,&Frayer,D.T. ideal targets for follow-up high resolution imaging of the 2002,PhysRep,369,111 Bournaud,F.,Elmegreen,B.G.,&Elmegreen,D.M.2007,ApJ, gasusingtheEVLAandALMA. 670,237 Bouwens,R.J.,etal.2010,ApJL,709,L133 4 Outlook:EVLA andALMA Carilli,C.L.,etal.2010,arXiv:1002.3838 Carilli,C.L.,etal.2007,ApJL,666,L9 Chapman,S.C.,Blain,A.W.,Smail,I.,&Ivison,R.J.2005,ApJ, Major progressin the studiesof the moleculargascontent 622,772 ofgalaxiesthroughoutcosmictimesiscurrentlylimitedby Coppin,K.E.K.,etal.2008,MNRAS,389,45 thefollowingtechnologicalrestrictions: Coppinetal.2010,MNRAS,tobesubmitted. – Sensitivity:Althoughremarkableprogresshasbeenmade Daddi,E.,etal.2010a,ApJ,713,686 Daddi,E.,etal.2010b,arXiv:1003.3889 inrecentyears,thesensitivitiesofcurrentinterferome- Daddi,E.,Dannerbauer,H.,Krips,M.,Walter,F.,Dickinson,M., tersdoonlyallowtostudythemoleculargascontentin Elbaz,D.,&Morrison,G.E.2009b,ApJL,695,L176 objects that have high star formation rates and/or high Daddi,E.,etal.2009a,ApJ,694,1517 moleculargasmasses(oforder1010M⊙,SFR∼100M⊙yr−D1a)d.di,E.,etal.2007,ApJ,670,156 Topushthistomoretypicalobjectathighredshift(with Daddi,E.,Dannerbauer, H.,Elbaz,D.,Dickinson,M.,Morrison, SFRthatareanorderofmagnitudelower)muchhigher G.,Stern,D.,&Ravindranath,S.2008,ApJL,673,L21 sensitivitesarerequired.ALMA,withitsunprecedented Daddi, E., Cimatti, A., Renzini, A., Fontana, A., Mignoli, M., collectingarea,willwithoutdoubtrevolutionizethefield Pozzetti,L.,Tozzi,P.,&Zamorani,G.2004,ApJ,617,746 Dannerbauer, H., Daddi, E., Riechers, D. A., Walter, F., Carilli, ofquantifyingthemoleculargascontentinhigh–zsys- C. L., Dickinson, M., Elbaz, D., & Morrison, G. E. 2009, tems, e.g. through dedicated studies of molecular line ApJL,698,L178 deepfields. Dekel,A.,etal.2009,Nature,457,451 – Resolution: Spatially resolved imaging of galaxies re- Dressler,A.,Oemler,A.,Gladders,M.G.,Bai,L.,Rigby,J.R.,& mainsanimportanttasktoderivetheextentofthemolec- Poggianti,B.M.2009,ApJL,699,L130 ulargasemissionandtoconstrainthedynamicalmasses Elbaz,D.,etal.2007,A&A,468,33 ofthesystems(whichinturngiveindependentestimates Ferrarese,L.,&Merritt,D.2000,ApJL,539,L9 oftheconversionfactortoderivemoleculargasmasses Frayer,D.T.,etal.2008,ApJ,680,L21 Frayer,D.T.,etal.1999,ApJ,514,L13 fromCOobservations),andtosearchforobservational Frayer,D.T.,Ivison,R.J.,Scoville,N.Z.,Yun,M.,Evans,A.S., evidence for interactions and/or cold mode accretion. Smail,I.,Blain,A.W.,&Kneib,J.-P.1998,ApJ,506,L7 BothEVLAandALMAwillenablesuchstudiesathigh Garc´ıa-Burillo,S.,etal.2006,ApJ,645,L17 spatial resolution – but even with these new facilities Gebhardt,K.,etal.2000,ApJL,539,L13 such studies will be restricted to small samples due to Genzel, R., Baker, A. J., Tacconi, L. J., Lutz, D., Cox, P., Guil- theintrinsicfaintnessofthesources. loteau,S.,&Omont,A.2003,ApJ,584,633 – Spectral Coverage: As galaxiesare observedat higher Genzel,R.,etal.2010,arXiv:1003.5180 Greve,T.R.,etal.2005,MNRAS,359,1165 andhigherredshifts,theirmolecularlinesareredshifted. Hopkins,A.M.,&Beacom,J.F.2006,ApJ,651,142 Sincethemoleculargasexcitationhasproventobedif- Ilbert,O.,etal.2010,ApJ,709,644 ferentinquasars,submillimetergalaxiesandmorenor- Ivison,R.J.,Smail,I.,Papadopoulos,P.P.,Wold,I.,Richard,J., malgalaxies(e.g.,Weissetal.2005,2007a,2007b,Dan- Swinbank,A.M.,Kneib,J.-P.,&Owen,F.N.2010,MNRAS, nerbaueretal.2009),itisimportantthatthesametrani- 261 sions(e.g.rotationalJtransitionsofcarbonmonoxide) Kennicutt,R.C.,Jr.1998,ApJ,498,541 www.an-journal.org (cid:13)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 794 Walter,Carilli&Daddi:MolecularGasatHighRedshift Keresˇ,D.,Katz,N.,Weinberg,D.H.,&Dave´,R.2005,MNRAS, Walter, F.,Weiß, A.,Riechers, D. A.,Carilli,C. L.,Bertoldi, F., 363,2 Cox,P.,&Menten,K.M.2009,ApJL,691,L1 Knudsen,K.K.,Neri,R.,Kneib,J.-P.,&vanderWerf,P.P.2009, Walter,F.,Carilli,C.,Bertoldi,F.,Menten,K.,Cox,P.,Lo,K.Y., A&A,496,45 Fan,X.,&Strauss,M.A.2004,ApJL,615,L17 Krumholz,M.R.,McKee,C.F.,&Tumlinson,J.2009,ApJ,699, Walter,F.,etal.2003,Nature,424,406 850 Wang,R.,etal.2008,ApJ,687,848 LeFloc’h,E.,etal.2005,ApJ,632,169 Wang,R.,etal.2010,arXiv:1002.1561 Leroy,A.K.,Walter,F.,Brinks,E.,Bigiel,F.,deBlok,W.J.G., Weiss,A.,Downes,D.,Walter,F.,&Henkel,C.2007a,FromZ- Madore,B.,&Thornley,M.D.2008,AJ,136,2782 MachinestoALMA:(Sub)MillimeterSpectroscopyofGalax- Magdis,G.E.,Rigopoulou,D.,Huang,J.-S.,&Fazio,G.G.2010, ies,375,25 MNRAS,401,1521 Weiß, A., Downes, D., Neri, R., Walter, F., Henkel, C., Wilner, Magorrian,J.,etal.1998,AJ,115,2285 D.J.,Wagg,J.,&Wiklind,T.2007b,A&A,467,955 Maiolino,R.,etal.2007,A&A,472,L33 Weiß,A.,Downes,D.,Walter,F.,&Henkel,C.2005,A&A,440, Maiolino,R.,etal.2005,A&A,440,L51 L45 Noeske,K.G.,etal.2007,ApJL,660,L43 Wilson,C.D.,etal.2009,ApJ,693,1736 Obreschkow,D.,&Rawlings,S.2009,ApJL,696,L129 Wiklind, T., Dickinson, M., Ferguson, H. C., Giavalisco, M., Ouchi,M.,etal.2009,ApJ,696,1164 Mobasher,B.,Grogin,N.A.,&Panagia,N.2008,ApJ,676, Prochaska,J.X.,&Wolfe,A.M.2009,ApJ,696,1543 781 Renzini,A.2006,ARA&A,44,141 Riechers,D.A.,etal.2006,ApJ,650,604 Riechers,D.A.,Walter,F.,Carilli,C.L.,Weiss,A.,Bertoldi,F., Menten,K.M.,Knudsen,K.K.,&Cox,P.2006,ApJL,645, L13 Riechers, D. A., Walter, F., Cox, P., Carilli, C. L., Weiss, A., Bertoldi,F.,&Neri,R.2007a,ApJ,666,778 Riechers, D. A., Walter, F., Carilli, C. L., & Bertoldi, F. 2007b, ApJL,671,L13 Riechers,D.A.,Walter,F.,Carilli,C.L.,Bertoldi,F.,&Momjian, E.2008a,ApJL,686,L9 Riechers, D. A., Walter, F., Brewer, B. J., Carilli, C. L., Lewis, G.F.,Bertoldi,F.,&Cox,P.2008b,ApJ,686,851 Riechers,D.A.,etal.2009,ApJ,703,1338 Robaina, A. R., Bell, E. F., van der Wel, A., Somerville, R. S., Skelton, R.E.,McIntosh, D. H.,Meisenheimer, K.,&Wolf, C.2010,arXiv:1002.4193 Salvaterra,R.,etal.2009,Nature,461,1258 Schinnerer,E.,etal.2008,ApJL,689,L5 Shields,G.A.,Menezes,K.L.,Massart,C.A.,&VandenBout,P. 2006,ApJ,641,683 Skelton,R.E.,Bell,E.F.,&Somerville,R.S.2009,ApJ,699,L9 Solomon, P.M., Downes, D., Radford, S. J. E., &Barrett, J. W. 1997,ApJ,478,144 Solomon,P.M.,&VandenBout,P.A.2005,ARA&A,43,677 Spergel,D.N.,etal.2007,ApJS,170,377 Springel,V.,Frenk,C.S.,&White,S.D.M.2006,Nature,440, 1137 Steidel,C.C.,Adelberger, K.L.,Giavalisco,M.,Dickinson, M., &Pettini,M.1999,ApJ,519,1 Smail,I.,Ivison,R.J.,&Blain,A.W.1997,ApJL,490,L5 Smolcˇic´,V.,etal.2009,ApJ,690,610 Tacconi,L.J.,etal.2010,Nature,463,781 Tacconi,L.J.,etal.2008,ApJ,680,246 Tacconi,L.J.,etal.2006,ApJ,640,228 Taniguchi,Y.,etal.2005,PASJ,57,165 Tanvir,N.R.,etal.2009,Nature,461,1254 Vanden Bout, P. A., Solomon, P. M., & Maddalena, R. J. 2004, ApJ,614,L97 vanderWel,A.,Rix,H.-W.,Holden,B.P.,Bell,E.F.,&Robaina, A.R.2009,ApJ,706,L120 vanDokkum,P.G.,etal.2006,ApJ,638,L59 Walter,F.,Riechers,D.,Cox,P.,Neri,R.,Carilli,C.,Bertoldi,F., Weiss,A.,&Maiolino,R.2009,Nature,457,699 (cid:13)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.an-journal.org

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.