Astronomy&Astrophysicsmanuscriptno.ms2092 February2,2008 (DOI:willbeinsertedbyhandlater) Molecular freeze-out as a tracer of the thermal and dynamical evolution of pre- and protostellar cores J.K.Jørgensen1⋆,F.L.Scho¨ier2,andE.F.vanDishoeck1 1 LeidenObservatory,P.O.Box9513,NL-2300RALeiden,TheNetherlands 5 2 StockholmObservatory,AlbaNova,SE-10691Stockholm,Sweden 0 0 Received¡date¿/Accepted¡date¿ 2 n Abstract.Radiativetransfermodelsofmulti-transitionobservationsareusedtodeterminemolecularabundancesasfunctions a ofpositioninpre-andprotostellarcores.Thedatarequirea“drop”abundanceprofilewithradius,withhighabundancesinthe J outermostregionsprobedbylowexcitation3mmlines,andmuchlowerabundancesatintermediatezonesprobedbyhigher 8 frequencylines.TheresultsareillustratedbydetailedanalysisofCOandHCO+ linesforasubset ofobjects.Wepropose a 2 scenario in which the molecules are frozen out in a region of the envelope where the temperature is low enough (. 40 K) to prevent immediate desorption, but where the density is high enough (>104–105 cm−3) that the freeze-out timescales are 1 v shorterthanthelifetimeofthecore.Thesizeofthefreeze-outzoneistherebyarecordofthethermalanddynamicalevolution 3 of the cores. Fitsto CO data for asample of 16 objects indicate that the size of the freeze-out zone decreases significantly 2 between Class 0 and I objects, explaining the variations in, for example, CO abundances with envelope masses. However, 6 thecorrespondingtimescalesare105±0.5 years,withnosignificantdifferencebetweenClass0andIobjects.Thesetimescales 1 suggestthatthedensepre-stellarphasewithheavydepletionslastsonlyashorttime,oforder105yr,inagreementwithrecent 0 chemical-dynamicalmodels. 5 0 Keywords.stars:formation,ISM:molecules,ISM:abundances,astrochemistry / h p - o 1. Introduction emissionshowsthatthecharacteristictemperaturescanriseto r a few hundredK in the innermostregions(e.g.,Shirleyetal., t The environments of the youngest pre- and protostellar ob- s 2002; Jørgensenetal., 2002). Still, significant depletions are a jects are characterized by large amounts of cold gas and observedalsointhesestages,e.g.,forCO,indicatingthatasub- v: dust. The chemistry in these early stages is affected to a stantial fraction of the envelopematerial remains at low tem- Xi largedegreebyfreeze-outofmoleculesontodustgrains(e.g., peratures(e.g.,Blakeetal.,1995;Ceccarellietal.,2001).Ina Bergin&Langer, 1997) and is closely related to the thermal large survey of pre- and protostellar objects, Jørgensenetal. r evolutionof the cores. An importantquestion is how the pre- a (2002, 2004b) found a strong correlation between the abun- and protostellar stages are linked and what their respective dancesofCO(andrelatedspeciessuchasHCO+)andenvelope timescales are. In the pre-stellar stages the thermalbalance is mass. dominatedbytheexternalradiationfield,which,exceptinspe- cial cases, does not heat the material to temperatures higher Thetimescalesforfreeze-outandevaporationdependsen- than≈15K(e.g.,Evansetal.,2001).Atsuchlowtemperatures sitively on density and temperature. The availability of accu- mostmoleculesgraduallyfreezeout,withveryshorttimescales ratephysicalstructuresfromdustcontinuumdatathusprovides in the innermost dense regions and increasing timescales to- an opportunity to constrain the timescales independently us- wardtheexteriorwheretheymaybecomelongerthantheage ing only chemistry. Currently, the ages of pre- and protostel- ofthecore(e.g.,Casellietal.,1999). lar objects are determined almost exclusively from statistics, In the protostellar stages, in contrast, the thermal balance such as the number counts of cores with and without asso- is dominated by the heating from the central newly formed ciated far-infrared (IRAS) sources (e.g., Lee&Myers, 1999; protostar,introducinga steep temperaturegradienttowardthe Jessop&Ward-Thompson,2000),resultinginalargespreadin corecenter.Radiativetransfermodelingofthedustcontinuum pre-stellaragesfrom∼105toafew×106yr.Oursemi-empirical procedure for constraining the chemistry and its assumptions aresummarizedinFig.1ofDotyetal.(2004),andconsistsin Sendoffprintrequeststo:JesK.Jørgensen ⋆ Present address: Harvard-Smithsonian Center for Astrophysics, the simplest case of fitting a constant abundance to the data, 60GardenSt.MS42,Cambridge,MA02138,USA as used in Jørgensenetal. (2002, 2004b). In those papers, it Correspondenceto:[email protected] wasalsorealizedthatconstantabundancemodelsprovidepoor 2 J.K.Jørgensenetal.:Molecularfreeze-outasatracerofthethermalanddynamicalevolutionofpre-andprotostellarcores fits to the lowest excitation lines of species such as CO and HCO+, leading to the proposalof a “drop” abundanceprofile withaspecificfreeze-outregionoverpartoftheenvelope.Such “drop”profileswerealsofoundtobestreproducetheinterfer- ometerdataof H CO in two sources(Scho¨ieretal., 2004). In 2 this paper, we further explore and quantify the “drop” abun- danceprofilesforthe fullsetof 16 objectsandrelate the size andlocationofthedepletionzonestopre-andprotostellarevo- lution.Thissemi-empiricalstudyformsanimportantcomple- ment to fullchemo-hydrodynamicalmodels which follow the chemistryintimeasthemattercollapsestoformacentralstar (e.g.,Rawlingsetal.,1992;Leeetal.,2004). 2. Model Themainassumptioninouranalysisisthatthechemicalstruc- Fig.1. Comparison between CO desorption and freeze-out turein theprotostellarstagesiscontrolledbythermaldesorp- timescales as functions of temperature and density. The solid tion processes. Althoughother non-thermalprocessessuch as line indicates the desorption timescale while the dotted and cosmic-ray induced desorption play a role for weakly-bound dashed lines indicate the (density and temperature depen- specieslikeCO, theycannotpreventfreeze-outinthedensest dent) freeze-out timescales for TMR1 and N1333-I2, respec- and coldest gas (e.g., Shenetal., 2004). Similarly, photodes- tively. Depletion occurs where the curves for the freeze-out orptioncankeepmoleculesoffthegrains,butthisonlyinvolves timescale intersect the dark colored region, in this example the outermost regions up to an A ≈ 2 (Berginetal., 1995). V for an assumed age of 105 years (dash-dotted line). Freeze- These effects are expected to be secondary to the abundance outtimescalescorrespondingtoH densitiesof1×105,1×106 2 structureresultingfromthefreeze-outandthermalevaporation and1×107cm−3forNGC1333-IRAS2and1×104,1×105and ofCO.Finally,outflowsandshocksmaybeimportantinregu- 1×106 cm−3 for TMR1 have been indicated by the filled and latingtheabundancestructures,butthenarrowline-widthsfor opencircles,respectively. optically thin species such as C18O and H13CO+ suggest that they probe predominantly the quiescent bulk envelope mate- rial.Ouranalysisfocussesonthechemistryintheouterenve- a first-orderformulationwith a pre-exponentialfactor of 1013 lopeon500–10,000AUscales,anddoesnotconsidertheaddi- but this is notexpectedto change ourmain conclusionssince tionalabundancejumpsintheinnermostregion(<100AU)at theexponentstaysthesameanddominatesthetemperaturebe- T >100Kwhereallicesevaporate. havior. FollowingRodgers&Charnley(2003),thethermaldesorp- tionrateξandthefreeze-outrateλcanbewrittenas: Fig. 1 shows the desorption and freeze-out timescales of CO, definedas1/ξ(M)and1/λ(M),respectively,asfunctions ξ(M) ∝ exp −Eb(M) (1) ofdepthfortwoprotostarsfromthesampleofJørgensenetal. kT ! (2002),NGC1333-IRAS2andTMR1.Theseobjectsareclassi- d T 0.5 fiedasClass0andI,andhavesignificantlydifferentenvelope λ(M) =4.55×10−18 g nH [s−1] (2) masses of 1.7 and 0.12 M⊙, respectively. Their temperatures m(M)! and densities have been constrained from submillimeter con- where T and T are the dust and gas temperatures, respec- tinuumdataandvarystronglywithradius.Figure1showsthat d g tively, m(M) the molecular weight, and n the total hydrogen freeze-out can – for a given age – only occur for a restricted H density.E (M)isthebindingenergyofthemoleculedepending regionofdensityandtemperatureintheenvelope.Athightem- b ontheice mantlecomposition,forwhichweadoptthe values peraturesT >Tevthemoleculeevaporateswhereasatlowden- tabulatedbyAikawaetal.(1997)(Eb=960KforCO).TheCO sities n < nde the freeze-outtimescale is too long.Due to the desorptiontemperaturesof30Korhigherinferredfromtheob- exponentialdependenceinEq.(1),thethermaldesorptionpro- servationaldata(Jørgensenetal.,2002)suggestthatnotallCO ceeds very rapidly as soon as the temperature is higher than isboundinapureCOicematrixbutthatatleastsomeofitisin Tev. In contrast, the freeze-out timescale varies more slowly amixturewithH Owherethebindingenergymayincreaseto with depth in the envelope,due to the inverse dependenceon 2 ≈1200K(Collingsetal.,2003).Thepre-exponentialfactorin density. Eq.(1)dependsonwhether“zeroth”or“first”orderdesorption Inordertoquantifythisscenario,a“drop”abundancestruc- kineticsareconsidered.Inastrochemicalmodelsfirst-orderki- tureisintroducedasatrialprofile,withadepletedabundance neticsarecommonlyused,whichisappropriateforthedesorp- X whereT ≤ T andn ≥ n ,andanundepletedabundance D ev de tionof(sub-)monolayerquantitiesofanadsorbatefromasolid X where T ≥ T or n ≤ n . Whereas T is in principle 0 ev de ev surface. For a thick layer of pure CO, a zeroeth-orderformu- awell-definedquantitydependingprimarilyontheicemantle lation of the desorptionprocess is more appropriate,however properties, n depends on the lifetime of the core compared de (seediscussioninCollingsetal.,2003).Ourcalculationsadopt tothedepletiontimescale(inducedinthepre-andprotostellar J.K.Jørgensenetal.:Molecularfreeze-outasatracerofthethermalanddynamicalevolutionofpre-andprotostellarcores 3 stages)andthedynamicalevolutionofthecoreatearlierstages, includingreplenishmentof undepletedmaterialthroughinfall from larger radii. This may move undepleted envelope mate- rialtosmallerradii,orhigherdensities,increasingthederived valueofn .Ontheotherhand,withinthestandardinside-out de collapsemodel(Shu,1977)theinfallradiifortheseveryearly stagesare so smallthatthebulkof theenvelopeisnotyetin- falling,includingthematerialnearthedepletionradiuswhere n=n . de For this discussion we only assume step functions at T and n , which are thus free parameters together ev de with X and X . With these assumptions the full Monte 0 D Carlo line radiative transfer is performed as described in Jørgensenetal.(2002)andScho¨ieretal.(2002)usingthecode of Hogerheijde&vanderTak (2000). We adopt the molec- Fig.2. Comparison between the density (black) and CO ular data summarized in the Leiden Atomic and Molecular abundance profiles (grey) from Bacmannetal. (2002) (dot- Database (Scho¨ieretal., 2005)1. Single-dish data on CO and ted lines), Tafallaetal. (2002) (solid lines), Leeetal. (2003) HCO+ takenfromJørgensenetal.(2002,2004b)arefittedini- and this paper (dashed lines) for the pre-stellar core L1544. tially for four objects at different stages of evolution, leaving Thedashed-dottedlineindicatestheconstantabundancefrom all4parametersfreeinthemodelingoftheCOdata.Theabun- Jørgensenetal. (2002). The freeze-out radius at which a sig- dance of HCO+ is expectedto reflect the freeze-outof CO as nificantdropintheCO abundanceoccursin thestep-function illustrated by chemical models (e.g., Bergin&Langer, 1997; model of Leeetal. (2003) is indicated by the vertical arrow. Leeetal.,2004),buttheHCO+ lineshavehighercriticalden- Theopenandsolidstarsindicatethevaluesofn (Tafallaetal., 0 sities and therefore provide an independent probe. Leeetal. 2002)andn (thiswork),respectively.Seetextfordetails. de modeled the chemical and physical evolution of a collapsing core through its pre- and protostellar stages and found simi- lar “dropprofiles” for the CO abundancesand closely related profile types and find that a step function with a characteris- species.FortheHCO+fits,T andn arethereforetakenfrom tic density marked with the vertical arrow in Fig. 2 provides ev de the fits to the CO data, givinglow valuesof the χ2-estimator. thebestfit.Bacmannetal.(2002)deriveonlyanaverageabun- Withn constrainedfromfitstotheobservedCOlines,Eq.(2) dancetowardthecenterofthecorewithadensityprofilewitha de thengivesthedepletiontimescalet = 1/λfora sourcewith lessdenseinnerflattenedregion,andthereforedonotgivecon- de agiventemperatureanddensityprofile.Subsequently,theCO straintsonnde.Takingthisdifferenceintheunderlyingdensity datafortheentiresampleof16sourceshavebeenfitted,keep- profilesintoaccounttheiraverage(orconstant)COabundance ingonlyX andn asfreeparameters. of7×10−6isingoodagreementwiththeconstantabundanceof D de The pre-stellar cores require a special discussion because 5×10−6forL1544derivedbyJørgensenetal.(2002). they do not have a central source of heating so that there is onlyasinglefreeze-outradiusRdecorrespondingtodensitynde. 3. Results The precise value of n depends in this case on the adopted de physical structure and abundance profile. As an example of The best fit parameters to the CO and HCO+ data for the 4 the uncertainties, ourbest-fit modelsfor L1544are compared sources are listed in Table 1 and illustrated in Fig. 4–5. For withotherrecentworkbyBacmannetal.(2002),Tafallaetal. the class I object, TMR1, the data are found to be consistent (2002) and Leeetal. (2003) in Fig. 2, which shows the best with a model without a depletion zone. For CO, X0 is found fitphysicalstructurestogetherwiththederivedCOabundance to be 2.7×10−4 consistent with the direct measurementof the structures. There are some differences in the adopted under- CO abundancerelative to H2 by Lacyetal. (1994) in a warm lying density profiles and derived parameters. For example, cloudinwhichCOisnotfrozenout.Thisisalsotheexpected Tafallaetal.(2002)useanexponentiallydecreasingCOabun- valuebasedontheresultsofJørgensenetal.(2002)whofound dancestructuretowardthecenterX(r)= X exp(−n(r)/n )with amaximumconstantCOabundanceof∼2×10−4.VanderTak 0 0 n = 5.5 × 104 cm−3. The origin of the difference between etal.(2000)foundasimilarmaximumconstantabundancefor 0 their n and the lower n of 1.5 × 104 cm−3 derived using asampleofhigh-massYSOs.Inthecontextofthedropabun- 0 de step functionsofthe CO abundance(Leeetal., 2003, this pa- dance model presented in this paper, this constant abundance per) stems from (i) the slightly lower density profile derived appliestosourcessuchasTMR1,wherethedropregionisso by Evansetal. (2001) and used by Leeetal. and in this pa- small that the abundance profile can be assumed to be essen- per;(ii)thehigher(undepleted)COabundanceintheouterre- tiallyconstant. gionofthecorefromLeeetal.andthispaper,and(iii)thefact Fortheclass0objects,incontrast,theconstantabundances thatCOdisappearscompletelyinthemodelsofTafallaetal.at foundbyJørgensenetal.(2002) areaboutan orderofmagni- radii less than ∼ 5000 AU. Leeetal. test differentabundance tudelower,indicatingthattheregionofCOdepletion(thedrop zone)islargefortheseobjects.Thesearealsotheobjectswhere 1 http://www.strw.leidenuniv.nl/∼moldata theintensitiesofthelowexcitationJ =1−0transitionsareun- 4 J.K.Jørgensenetal.:Molecularfreeze-outasatracerofthethermalanddynamicalevolutionofpre-andprotostellarcores Table1.BestfitparametersforCOandHCO+linesforthepro- tostarsN1333-I2,L723,TMR1andthepre-stellarcoreL1544. N1333-I2 L723 TMR1 L1544 T [K] & 35 40 ... ... ev n [104cm−3] 7 4 ... 1.5 de CO: X [10−4] 2.7 2.7 2.7 2.7 0 X [10−4] <0.14 0.14 ... 0.02 D χ2/N 4.4/7 2.4/6 0.75/6 4.2/4 HCO+: X [10−8] 1.8 <2.0 2.7b – 0 X [10−8] 0.26 0.35 ... – D χ2/N 4.1/5 1.8/3 2.1b/2 – t [105yrs]a 2 3 .1c 8 de Fig.3.Fitted C18O line-profilesforNGC1333-IRAS2.Upper Notes: The abundances have been derived from observations of the panels:constantfractionalabundance[12CO]of2.4×10−5from optically thin isotopic species, C18O, C17O and H13CO+ assum- Jørgensenetal. (2002). Lower panel: best fit drop abundance ing the standard isotopic ratios adopted in Jørgensenetal. (2004b). aDepletiontimescalecorresponding tothederivednde usingEq.(2). modelwithX0 =2.7×10−4andXD =1.4×10−5fromthispa- bModelincludingexcitationthroughcollisionswithelectronsatden- per. The calibrationaluncertaintyfor each observed spectrum sities≤3×104cm−3.c1σlimitassumingT of35K. isabout20%. ev derestimatedunlessthedropabundancestructureisintroduced. 2.7×10−4andtheevaporationtemperatureTevat35Ktoreduce Thisisclearly illustratedin Fig.3 whichshowsthe bestfitto the numberof free parameters.We stress thatuncertaintiesin the C18O lines for NGC 1333-IRAS2 with a constant abun- theunderlyingphysicalmodelsuchasduetotheuncertaindust dancemodelfromJørgensenetal. (2002) andthe dropmodel properties(see discussion in Jørgensenetal., 2002) and other fromthispaper.AsimilarplotillustratingthefitsforL723can factorsmay resultin systematic uncertaintiesbyfactorsof2– befoundinFig.7ofJørgensenetal.(2004b).Fig.4illustrates 3inthederivedabsoluteabundancesandvaluesofnde andtde theconfidencelevelsforthevariousparametersforNGC1333- (see also aboveexampleon L1544).However,the conclusion IRAS2.ItisseenthatT onlyhasalowerlimitandX onlyan thatadropabundanceprofileprovidesamuchbetterfitthana ev D upperlimit:forT higherthan35–40Ktheinnermostregion constant abundance profile is not affected by these uncertain- ev with high CO abundanceshas a very low filling factor in the ties. Also, sinceallsourcesare analyzedin thesame way,the single-dish beam and therefore only contributes a small frac- relativevaluesandinferredtrendsshouldbemorereliable. tiontothebeam-averagedcolumndensities.Thebestfitvalue The fitted nde and XD, together with the χ2 value and ofX0isagain2.5–3×10−4. derived tde are given in Table 2. For each source, all lines ForallsourceslistedinTable1exceptTMR1,X isfound could be well fitted (χ2 ≤ 2) using depletion densities D red tobetypicallyanorderofmagnitudelowerthanX0forbothCO nde =1×104–6×105 cm−3 (105±0.4 cm−3) correspondingto de- andHCO+.TheCOevaporationtemperaturesT areallfound pletiontimescalesof2×104–8×105years(105±0.5years).No ev to be ≥ 35 K, consistent with the results of Jørgensenetal. significantdifferencein timescales between Class 0 and I ob- (2002),whereasthevaluesofX arealloforder2–3×10−4with jectsisfound.Fortheobjectswiththeleastmassiveenvelopes 0 a10–20%statisticaluncertainty. (M . 0.1 M⊙)wherephotodesorptioncouldbecomeanissue, The derived CO abundance profile depends somewhat on thederivedtdeisalowerlimittotheactualdepletiontimescale. the adopted outer radius and any contribution from the sur- In general, however, the depletion radius is located further in rounding cloud to the lowest excitation lines. However, the theenvelopethantheradiuswhereAV =2forourobjects. samedropabundanceprofilesarealso necessaryto reproduce higherangularresolutioninterferometerdata,wherecontribu- 4. Discussion tions from the larger scale cloud are resolved out, as well as to model transitions with higher critical densities of H CO Thefactthatthedropabundanceprofilesprovidebetterfitsthan 2 and HCO+ which are not excited in the surrounding cloud constantabundanceprofilesforallsourcesandmoleculesstud- (Scho¨ieretal.,2004;Jørgensen,2004,andTable1). iedshowsthatthisstructureprovidesagoodrepresentationof Given the success of these models, the C18O and C17O the dominant chemistry in protostellar envelopes, with other linesfortheentiresampleofJørgensenetal.(2002)havebeen chemical effects being of secondary importance. To illustrate fitted to infer the CO abundance structure and the depletion the dependence on envelope mass, Fig. 6 compares the radii time scales. Based on the results for the above 4 sources, it correspondingto T and n for varyingenvelopemasses for ev de seemsreasonabletotaketheundepletedabundanceX0fixedat a (typical) 3 L⊙ centralsource. For an objectwith a large en- J.K.Jørgensenetal.:Molecularfreeze-outasatracerofthethermalanddynamicalevolutionofpre-andprotostellarcores 5 Table2.Valuesofn andX constrainedfromtheCOlinesfor d D eachindividualsourceinthesample,togetherwiththetotalχ2, numberoffittedlinesandderivedt . de Source n X χ2/N t de D de [cm−3] [yr] L1448-I2 4.8×105 3.0×10−7 4.2/4 3×104 L1448-C 6.0×104 2.0×10−5 10.7/7 2×105 N1333-I2 7.0×104 1.4×10−5 4.4/7 2×105 N1333-I4A 6.0×105 2.0×10−7 11.2/7 2×104 N1333-I4B 1.7×105 4.3×10−6 9.5/7 7×104 L1527 1.4×105 2.7×10−5 9.2/7 1×105 VLA1623a – – – – L483b 1.5×105 5.0×10−6 1.5/3 9×104 L723 4.0×104 1.4×10−5 2.4/6 3×105 L1157 <2.3×105 – – >5×104 CB244 1.3×105 1.6×10−5 3.8/5 1×105 L1489 7.0×104 1.0×10−5 8.1/6 1×105 Fig.4. χ2 confidence plots for fits to the CO lines toward TMR1 &1.0×105 – 0.75/6 .8×104 NGC 1333-IRAS2. In each plot the grey area marks the 1σ L1544 1.5×104 1.6×10−6 4.2/4 8×105 confidenceregionandthesubsequentlinecontoursthe2σ,3σ L1689B &1.0×104 .5×10−5 0.16/3 .1×106 and4σconfidenceregions. IRAS16293c 1.0×105 – – 1×105 aFor VLA1623 the 1–0 line observations are significantly underes- timated even for a high constant abundance. This likely reflects the denseridgeofmaterialinwhichthissourceislocated,whichalsoaf- fectsthehigherexcitationlines(seealsodiscussioninJørgensenetal., 2002). bFrom fits to single-dish and interferometric C18O obser- vations (Jørgensen, 2004). cFrom fits to H CO interferometer data 2 (Scho¨ieretal., 2004). The CO isotopic lines for IRAS 16293-2422 areconsistentwithaconstantabundancethroughouttheenvelopebut donotruleoutadropinabundance. Fig.5.AsFig.4butforTMR1(left)andL1544(right).Inthe leftpanelthedashedregionindicatesconstantabundancemod- els (i.e., models where the radius corresponding to n is lo- de catedclosertothecentralsourcethantheradiuscorresponding toT ). ev velope mass like NGC 1333-IRAS2 (1.7 M⊙), the depletion zone is a few thousand AU, a substantial fraction of the en- tire envelope. For an object with a small envelope mass like TMR1(0.1 M⊙),the freeze-outradiusmovesinwardsandthe sizeofthedepletedregionbecomesvanishinglysmall.Thisin- dicatesthatthetrendofincreasing(constant)abundanceswith decreasing envelope mass for these species (Jørgensenetal., 2002,2004b)reflectsthesizeofthedepletionregion. Based on the above fits, we propose a chemical structure Fig.6. Characteristic radii as functions of envelope mass for of the outer envelopesas shown schematically in Fig. 7. The a 3 L⊙ protostar using the models of Jørgensenetal. (2002). main differencebetween the pre- and protostellarcores is the Ann ∝ r−1.5 envelopedensityprofilewasassumedwithinner innersource of heatingin the protostarsthatcauses CO to be andouterradiiof25and15000AU, respectively.Thedashed evaporatedratherthan depletedtoward the source center. The line indicate the radius where T = 35 K and the solid and ev maindifferencebetweentheClass0andIobjectsisthesizeof dotted lines the radii where the depletion timescales are 104 thedepletionzone. and 105 years, respectively. The dashed-dotted line indicates Is this chemical structure also an evolutionary indicator? thedifferencebetweenthedepletionandevaporationradii(i.e., Due to progressive dispersion of the envelope by outflows size of the depletion zone) for a depletion timescale of 105 and mass accretion, an intially massive envelope like that of years. NGC1333-IRAS2shouldeventuallygothrougha phasewith 6 J.K.Jørgensenetal.:Molecularfreeze-outasatracerofthethermalanddynamicalevolutionofpre-andprotostellarcores luminosity embeddedinfrared sourcesdue to the limited sen- sitivtyofIRAS(see,e.g.,Youngetal.,2004)andthusleadto overestimatesofthetimescales.Furtherunbiasedsurveys,e.g., with the Spitzer Space Telescope, may shed further light into thisissue. Torefinetheproposedmodels,itwillbenecessarytocou- plemodelsforthedynamicalandradialchemicalevolutionas done by Leeetal. (2004) to fully address the use of n as a de tracerofage.Itisinterestingtonotethatourderivedempirical dropabundancestructureagreeswellwiththesedetailedmod- els,notonlyqualitativelybutalsoquantitatively.AstheirFig.6 shows,thetimescalesoverwhichtheheavydepletionoccursin thepre-andprotostellarstagesisonlyoforder105years. Another important consequence of the “drop” chemical structureisthatitaffectsthetracersofinfallinprotostostellar envelopes.Since the dynamicalstructure of protostellar cores isofteninferredfromfitsoflineprofilesofmoleculessuchas HCO+ (e.g., Gregersenetal., 1997), knowledge about the ra- dialchemicalstructureisimportantfordetaileddescriptionsof theinfallingenvelope.Forexample,thelocationofthecollapse radiusintheinside-outcollapsemodelfortheenvelopearound NGC 1333-IRAS2 (Jørgensenetal., 2004a) is at ≈ 1000 AU Fig.7.Proposedchemicalstructureforlow-masspre-andpro- whichisinthemiddleofthedropzonewherethetemperature tostellar objects. The left column gives the temperature and is≈ 25K.Theexact“infall”lineprofilewillthereforedepend density as functions of radius (black solid and grey dashed critically not only on the velocity field but also the presence lines, respectively) for three archetypical low-mass pre- and andlocationoftheouterpre-depletion(n < nde)zoneandthe protostellarobjects: L1544(pre-stellar core),N1333-I2(class amountofdepletion. 0,Menv >0.5M⊙protostar)andTMR1(classI,Menv <0.5M⊙ protostar). The black dotted lines indicate the derived abun- Acknowledgements. The authors thank Ted Bergin, Jeong-Eun Lee dance structures. The right column gives the depletion signa- and NealEvansfor useful discussions. Theresearch ofJKJismade tureforeachclassofobjectwith,goingfromtheoutsidetothe possiblethroughaNOVAnetwork2Ph.D.stipend,FLSacknowledges inside,thedarkgreyindicatingtheregionwherethedensityis supportfromtheSwedishResearchCouncil.Astrochemistryresearch toolowfordepletion(n< n ),theblackindicatingtheregion inLeidenissupportedbyaNWOSpinozagrant. de where the moleculesdeplete and the light grey indicating the regionwheretheyevaporate(T >T ). ev References alow-massenvelopelikethataroundTMR1.However,incon- Aikawa, Y., Umebayashi, T., Nakano, T., & Miyama, S. M. trastwiththesizeofthedepletionzone,noclearcorrelationis 1997,ApJ,486,L51 seenbetweenthederivedaget andderivedenvelopemassor Bacmann, A., Lefloch, B., Ceccarelli, C., et al. 2002, A&A, de luminosityfortheentiresample(e.g.,Table1).Thisindicates 389,L6 thatthedepletiontimescalesmustalsoreflectotherproperties, Bergin,E.A.&Langer,W.D.1997,ApJ,486,316 suchasthemassofthecorefromwhichtheprotostarisformed. Bergin, E. A., Langer, W. D., & Goldsmith, P. F. 1995, ApJ, Inotherwords,anotherobjectlikeTMR1didnotnecessarily 441,222 start out with an envelope as massive as that of NGC 1333- Blake,G.A.,Sandell,G.,vanDishoeck,E.F.,etal.1995,ApJ, IRAS2. The relatively short timescales of 105±0.5 years sug- 441,689 gestthatthedepletionstructureisestablishedinthepre-stellar Caselli, P., Walmsley, C. M., Tafalla, M., Dore, L., & Myers, stages, but only after the pre-stellar core has become dense P.C.1999,ApJ,523,L165 enough that freeze-outreally sets in. The rather small scatter Ceccarelli,C.,Loinard,L.,Castets,A.,etal.2001,A&A,372, seenindicatesthatthisstageisshort,oforder105years. 998 Thistimescaleprovidesaninterestingindependentagecon- Collings, M. P., Dever, J. W., Fraser, H. J., & McCoustra, straint for the studies of core collapse, since it is shorter than M.R.S.2003,Ap&SS,285,633 the ages derived from the above mentioned statistical studies Doty,S.D.,Scho¨ier,F.L.,&vanDishoeck,E.F.2004,A&A, (e.g., Lee&Myers, 1999; Jessop&Ward-Thompson, 2000). 418,1021 This apparent discrepancy may reflect simply the definition Evans,N.J.,Rawlings,J.M.C.,Shirley,Y.L.,&Mundy,L.G. of the pre-stellar stage: our estimate refers only to the dense 2001,ApJ,557,193 pre-stellar phase where depletion has become significant. On Gregersen, E. M., Evans, N. J., Zhou, S., & Choi, M. 1997, the other hand, the statistical studies may be missing low- ApJ,484,256 J.K.Jørgensenetal.:Molecularfreeze-outasatracerofthethermalanddynamicalevolutionofpre-andprotostellarcores 7 Hogerheijde,M. R. & van der Tak, F. F. S. 2000,A&A, 362, 697 Jessop,N.E.&Ward-Thompson,D.2000,MNRAS,311,63 Jørgensen,J.K.2004,A&A,424,589 Jørgensen, J. K., Hogerheijde, M. R., van Dishoeck, E. F., Blake,G.A.,&Scho¨ier,F.L.2004a,A&A,413,993 Jørgensen, J. K., Scho¨ier, F. L., & van Dishoeck, E. F. 2002, A&A,389,908 Jørgensen,J.K.,Scho¨ier,F. L.,& vanDishoeck,E.F.2004b, A&A,416,603 Lacy, J. H., Knacke, R., Geballe, T. R., & Tokunaga, A. T. 1994,ApJ,428,L69 Lee,C.W.&Myers,P.C.1999,ApJS,123,233 Lee,J.-E.,Bergin,E.A.,&Evans,N.J.2004,ApJ,617,360 Lee,J.-E.,Evans,N.J.,Shirley,Y. L.,&Tatematsu,K.2003, ApJ,583,789 Rawlings, J. M. C., Hartquist, T. W., Menten, K. M., & Williams,D.A.1992,MNRAS,255,471 Rodgers,S.D.&Charnley,S.B.2003,ApJ,585,355 Scho¨ier,F.L.,Jørgensen,J.K.,vanDishoeck,E.F.,&Blake, G.A.2002,A&A,390,1001 Scho¨ier,F.L.,Jørgensen,J.K.,vanDishoeck,E.F.,&Blake, G.A.2004,A&A,418,185 Scho¨ier, F. L., van der Tak, F. F. S., van Dishoeck, E. F., & Black,J.H.2005,A&A,inpress.(astro-ph/0411110) Shen,C.J.,Greenberg,J.M.,Schutte,W.A.,&vanDishoeck, E.F.2004,A&A,415,203 Shirley, Y. L., Evans, N. J., & Rawlings, J. M. C. 2002,ApJ, 575,337 Shu,F.H.1977,ApJ,214,488 Tafalla, M., Myers, P. C., Caselli, P., Walmsley, C. M., & Comito,C.2002,ApJ,569,815 vanderTak,F.F.S.,vanDishoeck,E.F.,Evans,N.J.,&Blake, G.A.2000,ApJ,537,283 Young,C.H.,Jørgensen,J.K.,Shirley,Y.L.,etal.2004,ApJS, 154