ebook img

Molecular Dynamics Simulations Show That Bound Mg Contributes to Amino Acid and Aminoacyl ... PDF

13 Pages·2006·0.47 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Molecular Dynamics Simulations Show That Bound Mg Contributes to Amino Acid and Aminoacyl ...

THEJOURNALOFBIOLOGICALCHEMISTRY VOL.281,NO.33,pp.23792–23803,August18,2006 ©2006byTheAmericanSocietyforBiochemistryandMolecularBiology,Inc. PrintedintheU.S.A. Molecular Dynamics Simulations Show That Bound Mg2(cid:1) Contributes to Amino Acid and Aminoacyl Adenylate Binding Specificity in Aspartyl-tRNA Synthetase through Long Range Electrostatic Interactions*□S Receivedforpublication,March27,2006,andinrevisedform,June12,2006 Published,JBCPapersinPress,June14,2006,DOI10.1074/jbc.M602870200 DamienThompson‡§1andThomasSimonson‡2 Fromthe‡LaboratoiredeBiochimie,CNRS,UMR7654,DepartmentofBiology,EcolePolytechnique,91128Palaiseau, Franceand§TyndallNationalInstitute,UniversityCollegeCork,Cork,Ireland Molecularrecognitionbetweentheaminoacyl-tRNAsynthe- important class of information-processing enzymes (1–4). taseenzymesandtheircognateaminoacidligandsisessential EachaaRScatalyzestheaminoacylationofaspecifictRNAbya forthefaithfultranslationofthegeneticcode.Inaspartyl-tRNA cognate amino acid, establishing the genetic code (5–7). The synthetase(AspRS),theco-substrateATPbindspreferentially amino acid (aa) and ATP react first to form an aminoacyl withthreeassociatedMg2(cid:1)cationsinanunusual,bentgeome- adenylate;inasecondstep,theaminoacidistransferredtothe try.TheMg2(cid:1)cationsplayastructuralroleandarethoughtto tRNA. Some aaRSs have evolved a third, editing step where alsoparticipatecatalyticallyintheenzymereaction.Co-binding incorrecttRNA-aaproductsarehydrolyzed(8–10).Specificity oftheATP(cid:2)Mg32(cid:1)complexwasshownrecentlytoincreasethe for the aa and the tRNA can arise from different component Asp/Asnbindingfreeenergydifference,indicatingthatamino steps,suchasbindingorreleaseoftheaminoacidorbindingor aciddiscriminationissubstrate-assisted.Here,weusedmolec- acylation of the tRNA. Furthermore, through their particular ulardynamicsfreeenergysimulationsandcontinuumelectro- combination of reversible binding and irreversible reaction static calculations to resolve two related questions. First, we steps,aaRSscanusespecificityinsuccessivestepstoamplifythe showedthatifoneoftheMg2(cid:1)cationsisremoved,theAsp/Asn overalleffect(11).Forexample,aminoacidspecificitycanbe binding specificity is strongly reduced. Second, we computed establishedintheaaRS(cid:2)aacomplex,theaaRS(cid:2)aaAMPcomplex, therelativestabilitiesofthethree-cationcomplexandthe2-cat- orboth. ion complexes. We found that the 3-cation complex is over- The20aaRSsformtwodistinctclassesof10memberseach whelminglyfavoredatordinarymagnesiumconcentrations,so (6).Belowwehavefocusedmainlyonaspartyl-tRNAsynthetase thattheproteinisprotectedagainstthe2-cationstate.Inthe (AspRS),oneofthebeststudiedaaRSs.AspRSbelongstothe homologous LysRS, the 3-cation complex was also strongly aaRS class II, forming a subclass IIb with AsnRS and LysRS. favored,butthethirdcationdidnotaffectLysbinding.IntRNA- Although aaRSs are generally very amino acid-specific, they bound AspRS, the single remaining Mg2(cid:1) cation strongly haveacomplexevolutionaryhistory(4,12),whichhasledtoa favoredtheAsp-adenylatesubstraterelativetoAsn-adenylate. remarkablediversityinthemodernenzymes.WithinclassIIb, Thus, in addition to their structural and catalytic roles, the forexample,LysRSisveryspecificinyeast;butinEscherichia Mg2(cid:1) cations contribute to specificity in AspRS through long coli,itismorepromiscuous(13).InE.coli,AspRSdiscriminates rangeelectrostaticinteractionswiththeAspsidechaininboth stronglyagainstAsn,butmoreweaklyagainstD-Asp(10).Sev- thepre-andpost-adenylationstates. eralaaRSsachieveahighfidelitythroughtheireditingstep.An ambiguousIleRSwasconstructedrecentlybydeletingtheIleRS editingdomain(14);theresultingIle/Valambiguityactuallyled Specificmolecularassociationisfundamentaltomanybio- to a growth advantage in bacteria. As a last example, many chemical processes and is frequently used to transfer energy archaebacteria lack AsnRS and produce tRNAAsn-Asn by an or information. Aminoacyl-tRNA synthetases (aaRSs)3 are an indirect route; tRNAAsn is aspartylated by a “nondiscriminat- ing” AspRS (which accepts both tRNAAsp and tRNAAsn), and *Thecostsofpublicationofthisarticleweredefrayedinpartbythepayment thentheAspmoietyisamidated(1). ofpagecharges.Thisarticlemustthereforebeherebymarked“advertise- ment”inaccordancewith18U.S.C.Section1734solelytoindicatethisfact. Themechanismofthetwoenzymereactions,aminoacid □S Theon-lineversionofthisarticle(availableathttp://www.jbc.org)contains adenylation and tRNA aminoacylation, is qualitatively supplementalmaterialincludingFig.SM1andTableSM1. 1SupportedinpartbyanEgidepostdoctoralfellowship. understood in both aaRS classes (1). For AspRS, crystal 2Towhomcorrespondenceshouldbeaddressed:LaboratoiredeBiochimie structuresareavailablefromseveralorganisms,encompass- (CNRS,UMR7654),Dept.ofBiology,EcolePolytechnique,91128Palaiseau, ingthethree“kingdoms”oflifeandthewholereactionpath- France. Tel.: 33-169-33-38-81; Fax: 33-169-33-30-13; E-mail: thomas. way: apoenzyme, complexes with Asp alone, ATP alone, [email protected]. 3The abbreviations used are: aaRS, aminoacyl-tRNA synthetase; aa, amino aspartyl-adenylatealone(AspAMP)(15–20),andcomplexes acid(s);AspRS,aspartyl-tRNAsynthetase;AMP,adenosinemonophosphate; withtRNAAsppresent(21–23).Eachsubstrateisrecognized ATP, adenosine triphosphate; MD, molecular dynamics; MDFE, molecular by side chains conserved throughout AspRSs (Asp side- dynamicsfreeenergy;PBFE,Poisson-Boltzmannfreeenergy;PME,particle meshEwald;CRF,continuumreactionfield;r.m.s.,rootmeansquare. chainrecognition)orthroughoutallormostofclassII(ATP, 23792 JOURNALOFBIOLOGICALCHEMISTRY VOLUME281•NUMBER33•AUGUST18,2006 This is an Open Access article under the CC BY license. CationBindingandAspRSSpecificity Asp backbone recognition). The active site is highly preor- latedstatesaredifficulttostudyexperimentally.Oneextensive ganized to receive the Asp and ATP substrates, with the mutationstudyexploredchangesintheapparentAspandATP apoenzyme largely superimposable on the various complex dissociation constants spanning only 2 orders of magnitude, structures (22). Each substrate, taken separately, is almost correspondingtoafreeenergyspanoflessthan3kcal/mol(26). exactlysuperimposableonthecorrespondingmoietyinthe Non-cognatecomplexeslikeAspRS(cid:2)Asncouldnotbeanalyzed. known AspAMP or tRNA(cid:2)Asp complexes. In all of class II, Weakly populated states are invisible in a crystal structure. ATPbindsinaveryunusual,completelybentconformation, Thus,fromtheAspRS(cid:2)ATPcrystalstructures,ATPbindspref- withthreeassociatedMg2(cid:1)cations(ortwoinafewcases;see erentially with three associated Mg2(cid:1) cations (17). However, below). The principal cation coordinates both the reactive thecrystallographicdatadonotrevealtheexactoccupanciesof (cid:1)-phosphateandthe(cid:2)-phosphateandispositionedbycon- thethreemagnesiumsites.AcomplexwithATPandonlytwo servedsidechains(24).Theothertwocationscoordinatethe cations,presentinthecrystalwithapopulationof10or20%,for (cid:2)-and(cid:3)-phosphatesoneithersideoftheATP. example,wouldnothaveanappreciableeffectontheelectron InAspRS,theadenylationreactioncanoccurintheabsence densitymapsandwouldbeimpossibletoinferfromthecrys- of tRNA. Once Asp and ATP are in place, the Asp backbone tallographicdata. reactswiththe(cid:1)-phosphatethroughanin-linemechanismand Theoreticalmethodsrepresentavaluablecomplementary a pentacoordinate transition state. Inversion of the (cid:1)-phos- toolthatcanresolvethesedifficulties(32–37).Thespecific- phate is clearly seen when crystals of AspRS(cid:2)ATP and ityofAspbindingtoAspRSisgovernedbythebindingfree AspRS(cid:2)AspAMParecompared(19).Aswithmostenzymereac- energy difference between the cognate Asp and competitor tions,theexactroleofeachsurroundinggroupishardtoestab- ligands. This difference can be obtained from molecular lish.ItispresumedthattheprincipalMg2(cid:1)cationhelpsacti- dynamics free energy simulations (MDFE), which have vatethe(cid:1)-phosphatebywithdrawingelectronsandpullingits matured enormously in recent years and have been used to oxygensintoapentacoordinategeometry,helpingtostabilize study several aaRSs. Extensive studies (33–35) show that the transition state through electrostatic interactions. The whentheAspRSbindingpocketisinthe“open”state(open othertwocationsneutralizetheleavingpyrophosphateproduct flippingloop),thereisanenormouspreferenceforAspover andmayalsocontributetotransitionstatestabilization. Asn,thankstoanetworkofelectrostaticinteractionsinthe WehavefocusedhereontheroleofMg2(cid:1)inAsp/Asndis- active site. A thermodynamic cycle (see below) was used to criminationbyAspRSfromE.coli.AspRSspecificityisacom- obtainbindingfreeenergydifferences,andagroupdecom- plexproblem.Althoughtheenzymeispreorganized,Aspbind- positionofthefreeenergywasusedtoidentitytheresidues ing does induce structural reorganization in two important determiningaminoacidbindingspecificity. regions: (i) a so-called histidine loop (residues 436–449 in Whentheflippingloopcloses(17,23),thenegativeGlu-171 E.coli)shiftsandbecomesmoreordered,withHis-448making isbroughtclosetotheAspligandsite.Werecentlypredicted ahydrogenbondtoAsp;(ii)aflexible“flippingloop”(residues computationally(36)thatthisconformationalchangeinduces 167–173inE.coli)closesovertheaabindingsite,bringingthe proton binding by the nearby His-448. The His-448 positive negativeGlu-171closetotheAspligand.Theflippingloopis chargethenaccountsformostofthelarge,computedAsp/Asn conservedineukaryal,eubacterial,andarchaebacterialAspRS discrimination.Inanotherlongrangeelectrostaticeffect,asub- (17,18,23),andacorrespondingmobileloopisfoundinAsnRS strate-assisted specificity was observed: co-binding of ATP (27) and LysRS (28). The exact populations of the open and increases the Asp/Asn discrimination further. In eukaryotic closedloopstates,withandwithoutboundAsp,areunknown. AspRSs, His-448 is absent, being replaced by an Arg that is AnotherdifficultyisthatthesubstratesAspandATPareboth moredistantfromtheligandsite.Intheseorganisms,theroleof charged. Therefore, both short and long range electrostatic ATPasamobilediscriminatoristhereforeimportant,protect- interactions are expected to play a role in both binding and ingagainstAsnbinding.Inthesamestudy,thecomputational specificity.Aminoacidbindingmightcoupletoprotonbinding modelwastestedandvalidatedbyexperimentalmeasurements orreleasebyHis-448orHis-449andtoMg2(cid:1)bindingorrelease ofAsp-stimulatedpyrophosphateexchangeanditsinhibition byATP. byAsn(36). AspRSspecificityhasbeenanalyzedwithapowerfulcombi- The present article focuses on the precise stability of the nation of crystallography, site-directed mutagenesis, kinetic ATP-associatedMg2(cid:1)cationsintheAspRSstructureandtheir and thermodynamic experiments, and phylogenetic analyses. roleinthethermodynamicsofAspandAsnbinding.Wecon- Thesemethodshavelimitations,however.Conservedresidues sider AspRS from both E.coli and the archaebacterium Pyro- maycontributetobinding,bindingspecificity,catalysis,orall coccuskodakaraensis.Wereportfreeenergysimulationsthat three. Experimental assays based on catalytic activity (29, 30) compare Asp and Asn binding to AspRS in the presence of usually become infeasible once a single essential residue is either bound ATP(cid:2)Mg2(cid:1) or bound ATP(cid:2)Mg2(cid:1). The level of 2 3 mutated.Thestrengthofelectrostaticinteractionsisverydiffi- Asp/Asndiscriminationineachcasewascomputedusingtwo cult to infer from crystal structures, because the complex distinct, largely independent methods for the free energy dielectric environment within a solvated protein causes large changes. The first method, MDFE, alchemically transforms deviationsfromasimpleCoulomb’slaw(31).Crystallography Asp into Asn during a series of molecular simulations with doesnotrevealtheionizationstatesofacidicandbasicresidues, anexplicitsolventrepresentation(33).Thesecond,Poisson- and pK measurements are difficult for AspRS, which is a Boltzmann free energies (PBFE), models the ligand binding a homodimerof1180residues.Mostimportantly,weaklypopu- reactionsusingacontinuumdielectricmodelofbothprotein AUGUST18,2006•VOLUME281•NUMBER33 JOURNALOFBIOLOGICALCHEMISTRY 23793 CationBindingandAspRSSpecificity andsolvent(35).MDFEwasthenusedtocomputetherelative DataBankentry1IL2;seeabove)andgeneratedsolvated24-Å affinitiesofAspRSforATP(cid:2)Mg2(cid:1)andATP(cid:2)Mg2(cid:1)andtodem- spherescenteredontheligand.WethenusedpK calculations 2 3 a onstrate that the ATP(cid:2)Mg2(cid:1) complex has a negligible occu- (see below) to determine the protonation state of His-223, a 2 pancyanddoesnotplayanyroleinthespecificity.Intheclosely histidineresidueorientedintotheATPbindingpocket.LysRS homologousE.coliLysRS,theATP3-cationcomplexisagain structures were generated from a 2.1-Å resolution E.coli strongly favored. Binding of the positively charged Lys sub- LysRS(cid:2)Lys(cid:2)ATP(cid:2)Mn2(cid:1) crystal structure (28). We took a 24-Å 3 strate,however,isnotaffectedbycationbinding. spherecenteredonthe(cid:3)-carbonoftheLysligand,replacedthe We also considered the post-adenylation, AspRS(cid:2)tRNA(cid:2) Mn2(cid:1)cationswithMg2(cid:1),andthensolvatedthesystem.Histi- AspAMP complex. Our simulations predict a strongly bound dine protonation states were assigned by visual inspection Mg2(cid:1) cation that aids AspAMP recognition. We show that exceptforHis-270,whichpointsintotheLysRSATP-binding specificityismaintainedinthepost-adenylationstate(11),with pocket.InbothAspRSandLysRS,theprotonationstateofthe AspAMPbindingmorestronglythanAsnAMPinthepresence histidine oriented into the ATP pocket is coupled to cation of one Mg2(cid:1) cation and tRNAAsp. The Mg2(cid:1) cation boosts binding. AspAMPbindingspecificity,inalongrangeelectrostaticeffect Structures for AspRS with bound AspAMP and tRNA similar to that of ATP(cid:2)Mg2(cid:1) in the preadenylation complex. were generated from the 2.4-Å resolution E.coli crystal 3 Thus,theintroductionofnegativechargeintoAspRS,bycon- structure 1C0A (18). Again, we considered a 24-Å sphere formationalchange(36)ortRNAbinding,iscompensatedby centered on the ligand (cid:3)-carbon and solvated the system. histidine protonation (36) and/or cation binding to preserve pK calculationswereusedtodeterminethepredominantstate a Asprecognition. of His-448, a histidine residue close to AspAMP. The cation Finally, in the supplemental material we have reported a associatedwiththeAspAMPligandphosphategroup(15)was survey of 238 x-ray structures of protein complexes with placedbystructuralalignmentwiththeprincipalcationinthe ATPorGTPtakenfromtheProteinDataBank,whichsheds Asp(cid:2)ATP(cid:2)Mg2(cid:1) state (17). The cation occupies the space 3 additionallightontheroleoftheMg2(cid:1)cationsandsupports assignedtowatermolecule1073inthex-raystructure(18)and thepredicted3-cationAspRSstate.Indeed,wefindthatATP remainsinthesameoctahedralbindingmodethroughoutthe bindinginacompletelybentconformationwiththreeasso- simulations, coordinating the Glu-482 and Asp-475 carboxy- ciated Mg2(cid:1) cations is a characteristic property of class II latesandtwoorthreewatermoleculesandremaining4–5Å aaRSs. awayfromtheAspAMPphosphategroup. ForbothAspRSandLysRS,iftheentireaaRSproteinwere EXPERIMENTALPROCEDURES included in the model, rather than a spherical subset, a far greater number of solvating waters would be needed. To MolecularDynamicsSimulations reduce artifacts due to the protein truncation, protein StartingstructuresforAspRSwithboundAspandATPwere groupsbetween20and24Åfromthecenterwereharmon- generated from a 2.6-Å resolution crystal structure of E.coli icallyrestrainedtotheirpositionsinthecrystalstructure.In AspRSwithboundaspartyl-adenylate,AspAMP(ProteinData this way, protein regions beyond 24 Å are accounted for Bank entry 1IL2) (23). The two tRNA ligands were removed. structurally.Theywillalsobeaccountedforthermodynam- Weconsideredproteinresidueswithina24-Åspherecentered ically,inaseparatestep(seebelow),wherethefreeenergyto onthe(cid:3)-carbonoftheadenylateligandofonemonomerofthe reintroducethemissingproteingroupsiscomputedfroma 1IL2 dimer. We overlaid either Asp or Asn on the adenylate continuumelectrostaticmodel.Thishybrid,atomic/contin- moleculeanddeletedtheoriginalligand.ATPanditsassociated uumapproachisaccurate,becauseearlierworkonthissys- cations were positioned by taking ATP(cid:2)Mg2(cid:1) from the 1.9-Å temshowedthatbothstructuresandfreeenergiesobtained 3 resolutionP.kodakaraensisAspRS(cid:2)ATPcomplex(ProteinData with spherical subsets of 20-, 24-, or 28-Å radii were all Bankentry1B8A)(17)andbuildingitintothe1IL2structureso similar(37). as to overlap with the AMP moiety of the original AspAMP Alllongrangeelectrostaticinteractionswerecomputedeffi- ligand. Hydrogens were constructed with ideal stereochemis- cientlybytheparticlemeshEwald(PME)method.Foursodium try. Protonation states of histidines were assigned by visual counterionswereincludedtoreducetheformalchargeofthe inspection, except for His-448 and His-449 in the active site, system.Onenanosecondofunrestrainedmoleculardynamics whichwereassignedearlierthroughextensivesimulations(36). wasperformed(foreachcomplex)atconstantroomtempera- OrientationsofHis,Asn,andGlnsidechainsintheactivesite tureandpressurewithaNose´-Hooveralgorithmfollowing200 weretakenfromthecrystalstructureandverifiedbyinspection ps of thermalization. The complexes modeled are E.coli (23) (33).Inadditiontocrystalwaters,a73-Åcubicboxofwaterwas AspRS(cid:2)Asp(cid:2)ATP(cid:2)Mg2(cid:1), AspRS(cid:2)Asp(cid:2)ATP(cid:2)Mg2(cid:1), AspRS(cid:2)Asn(cid:2) 3 2 overlaid, and waters overlapping the protein were removed. ATP(cid:2)Mg2(cid:1), and AspRS(cid:2)AsnATP(cid:2)Mg2(cid:1). 500-ps trajectories 3 2 ThefinalmodelcontainedtheaminoacidandATPligands,357 werealsoproducedforeachaminoacidligandinsolution,Asp proteinresidues,andaround10,000waters,including113crys- orAsn,solvatedatthecenterofaboxofwatermolecules,with talwaters.Periodicboundaryconditionswereassumed;i.e.the theligand(cid:3)-carbonweaklyrestrainedattheoriginthroughout entire73-Åboxwasreplicatedperiodicallyinalldirections. thedynamics. We also generated AspRS(cid:2)Asp(cid:2)ATP complexes from the Additional simulations were performed with a less expen- P.kodakaraensis AspRS(cid:2)ATP complex (17). We built in Asp sive,spherical,continuumreactionfield(CRF)(37,38)model. andAsnligandsbyalignmentwiththeE.colistructure(Protein It included the same protein residues as mentioned above, 23794 JOURNALOFBIOLOGICALCHEMISTRY VOLUME281•NUMBER33•AUGUST18,2006 CationBindingandAspRSSpecificity alongwiththewatermoleculesinsidethe24-Åsphere(about culations were performed for multiple structures, sampled 560waters).Waterandproteinoutsidethe24-Åspherewere every4psalongtheequilibrated3nstrajectory,foratotalof treated as a single, homogeneous, dielectric medium with a 750structures.Theseparateligandandproteinstructureswere dielectric constant of 80 (38). Electrostatic interactions be- obtained by simply discarding the unwanted partner. Thus, tween atoms within the sphere were computed without any structuralrelaxationonseparatingproteinandligandwasnot cutoff, using an efficient multipole approximation for distant explicitlyincluded(thoughitisimplicitinthedielectriccon- groups(39).Amultipolarexpansionwith20termswasusedto stant).Thesolventdielectricconstantwassetto80.Thesolute approximatethereactionfieldduetothesurroundingcontin- dielectricconstantwassetto4,basedonextensiveearliercom- uum(37,38).Newtoniandynamicswereusedfortheinner20Å parisons between MDFE and PBFE calculations for AspRS of the sphere and Langevin dynamics for the outer region (35). Proteins groups outside the 24-Å sphere (above) were (20–24Å),withabathtemperatureof293K.The same four neglected.Thiswasaconvenientandharmlessapproximation, complexesasaboveweresimulatedfor3nseach,aswellas becausetheyhavebeenshowntocontributelessthan1kcal/ the following 10 complexes (3 ns each): AspRS(cid:2)Asp (or Asn)(cid:2) moltotheAsp/Asnbindingfreeenergydifference(37).Wealso ATP(cid:2)Mg2(cid:1)(orMg2(cid:1))complexesfromP.kodakaraensis(17);and used PBFE to estimate the binding strengths of each Mg2(cid:1) 3 2 E.coli(28,18)LysRS(cid:2)Lys(cid:2)ATP(cid:2)Mg2(cid:1)(orMg2(cid:1)),AspRS(cid:2)AspAMP cation in AspRS(cid:2)ATP and LysRS(cid:2)ATP, Lys binding to LysRS, 3 2 (or AsnAMP)(cid:2)Mg2(cid:1)(cid:2)tRNA, and AspRS(cid:2)AspAMP (or AsnAMP)(cid:2) AspAMP/AsnAMPbindingtoAspRS(cid:2)tRNA,andcationbind- tRNAcomplexes.TheCHARMM22forcefield(40)wasusedfor ingtoAspRS(cid:2)aaAMP(cid:2)tRNA,withthesamesetup. theprotein,ligands,andcounterions.AslightlymodifiedTIP3P MDFE Simulations—Asp/Asn mutation runs were per- modelwasusedforthewater(41).WeusedtheCHARMMpro- formedwiththePMEsimulationsetup.Theligandside-chain gram(42),versionc30b1,forallcalculations. geometry, atom types, and charges were reversibly changed fromtheAspvaluestotheAsnvalues(33–36)overaseriesof FreeEnergyCalculations ten100-pssimulationsor“windows.” The methods used to compute ligand binding free energy HavingidentifiedthemostweaklyboundcationfromPBFE differencesinAspRShavebeendescribedpreviously(33,36,43, calculations(seeabove),wealsoperformedMDFEsimulations 44). For Asp/Asn binding, we use the thermodynamic cycle to determine the stability of the ATP(cid:2)3-cation complex in showninFig.1.WeusethehorizontallegsforsimplifiedPBFE AspRS and LysRS, reversibly changing the third cation into a calculationsandtheverticallegsformorerigorous,alchemical, watermoleculeoveraseriesofMDwindows.Thisprocedure MDFE simulations. In the latter, the ligand Asp is reversibly was analogous to that used for the Asp/Asn mutations. The transformedintoAsnduringaseriesofsimulations;thecorre- energyfunctioncanbeexpressedasalinearmixtureofMg2(cid:1) sponding work is derived from a thermodynamic integration andwaterterms, formula(43).Similarly,totestthestabilityoftheATP(cid:2)3-cation complex,themostweaklyboundcation(seebelow)wasrevers- U(cid:2)(cid:4)(cid:3)(cid:5)U0(cid:6)(cid:2)1(cid:7)(cid:4)(cid:3)Uwater(cid:6)(cid:4)UMg2(cid:1) (Eq.1) ibly transformed into a water molecule (as shown in Fig. 2). where(cid:4)isaweightor“couplingparameter”andU represents Related simulations, using the Poisson-Boltzmann linear 0 interactionsbetweenpartsofthesystemotherthanthehybrid responseapproximation(PB/LRA)method,wereusedtoiden- ligand.WegraduallymutatedMg2(cid:1)intowaterbychanging(cid:4) tifythepK ,andhencethepredominantstate,ofproteinhisti- a from1tozero.Thesuccessiveweightswere(cid:4)(cid:4)0.99,0.95,0.9, dineresiduesimportantforligandbinding.Seetworecentstud- 0.8,0.6,0.4,0.2,0.1,0.05,and0.01forMg2(cid:1)and1-(cid:4)forwater. ies(36,45)fordetailsofthemethod. Thederivativeofthefreeenergy,G,canbewritten, PBFE Computations—The electrostatic contribution to the ltirgoasntadtbicinfrdeinegefnreeregeynienrgtyhewalisgoanbdta(cid:2)pinreodtebinyscuobmtrpalcetxinagntdheineltehce- dG/d(cid:4)(cid:5)(cid:5)UMg2(cid:1)(cid:7)Uwater(cid:6)(cid:4) (Eq.2) separate ligand and protein (35). Non-electrostatic contribu- wherethebracketsrepresentatimeaverageoveranMDtrajec- tionstothefreeenergywereassumedtocancel.Thisshouldbe toryperformedwiththeenergyfunctionU((cid:4)).Thefreeenergy agoodapproximationfortheAsp/Asndifferences,becausethe derivativeswerecomputedateach(cid:4)valuefroma100-psMD twoligandshavethesamesizeandbindinthesameposition simulation.Eachrunthuscorrespondsto1.0nsintotal. (35). The electrostatic potential was obtained by numerically Equation2canbeusedtoperformagroupdecompositionof solvingthePoisson-Boltzmannequationusingacubicgridand thefreeenergies(43,46).Indeed,thetermUMg2(cid:1)isasumover afinitedifferencealgorithm,implementedinCHARMM(grid interactionsbetweenthecationandsurroundingaminoacids size,144Å;gridspacing,0.4Å).Theprotein(cid:2)solventboundary orwaters,asissimilarlytrueforU .Thus,thefreeenergy water wasdefinedbythemolecularsurfaceasinanearlierwork(35). derivative and, ultimately, the free energy can be viewed as a PBFEwasperformedatzeroionicstrength.Inanearlierstudy sumofgroupcontributions.Suchdecompositionshaveproven ofAspRS(35),theAsp/Asndiscriminationcomputedwithzero usefulforidentifyingthesourcesofbindingaffinity(44). and physiological ionic strength differed by just 0.3 kcal/mol. CorrectionforDistantPartsoftheProtein—IntheMDsimu- Thestructureoftheprotein(cid:2)ligandcomplexwastakenfromthe lations above, protein groups outside of the 24-Å spherical MDsimulations(above).Giventhelongersamplingtimespos- region were only taken into account structurally through the sible with CRF and the close similarity between the CRF and applicationofharmonicrestraintstoproteingroupsnearthe PMEtrajectoriesintermsofbindingpocketgeometryandflex- 24-Åboundary.Theirdirectcontributiontothefreeenergycan ibility,wegenerallyusedstructuresfromCRFsimulations.Cal- becomputedinasecondstep,wheretheyarereversiblyintro- AUGUST18,2006•VOLUME281•NUMBER33 JOURNALOFBIOLOGICALCHEMISTRY 23795 CationBindingandAspRSSpecificity ducedbackintothesystem.Thefreeenergyforthisstepcanbe threedependingonthestrengthoftheM1/(cid:2)-phosphateinter- obtainedusingacontinuummodel(asdetailedinRefs37and action,completetheM1coordinationsphere.Oneoftheseisa 47).Acontinuummodelisappropriatebecausethegroupsare highly ordered water, always bridging M1 and Glu-482 in an morethan24Åawayfromtheligands.Refs.37and47showthat interaction secondary to the direct M1-Glu-482 stabilization. thenetcontributionofthissecondsteptotheAsp/Asnbinding Anothercation,M2,ispositionedbetweentheATP(cid:2)-,(cid:3)-phos- freeenergydifferenceislessthan1kcal/mol;thisislessthanthe phates and Glu-482, with three waters also coordinated. M2 overalluncertaintyofbothMDFEandPBFE.Therefore,inthis andGlu-482alsohaveasecondarywater-mediatedinteraction, work,wedidnotactuallycomputethelongrangecorrection. althoughherethewaterisonlypresent(cid:7)50%ofthetime,with Wesimplyapproximateditbyzeroandincludeditseffectinthe exchangeinwatermoleculeseveryfewhundredps.Theionized overalluncertaintyestimate.Notethatinthiswork,continuum residuesAsp-475andGlu-482arehighlyconservedinclassII electrostaticsareusedinthreedistinctways,whichshouldnot aaRSs; mutagenesis experiments indicate that both are func- beconfusedwitheachother:1)inthissecond,freeenergystep; tionallyirreplaceableinAspRS(24). 2)forPBFEcalculations(seeabove);and3)intheMDFEsim- Thethirdcation,M3,alsobridgestheATP(cid:2)-,(cid:3)-phosphates ulationswithCRFboundaryconditions. butdoesnotbindtoprotein.M3remainsonthemoresolvent- exposedsideofthebindingpocket,completingitsoctahedral RESULTS coordinationspherewithfourwatermolecules.Thecoordinat- Wewillfirstsummarizethemostimportantstructuraland ingwatershaveanaverager.m.s.fluctuationofjust0.4Å.The dynamic features of the amino acid, ATP, and tRNA binding r.m.s. fluctuations of each of the cations are: M1 (cid:4) 0.24 Å; sitesinAspRS.Next,wewilldescribeourcalculationstocom- M2(cid:4)0.26Å;M3 (cid:4)0.32Å.Thus,M3ispredictedtohavea pareAspandAsnbindingtoAspRSinthepresenceofeither crystallographic B-factor that is larger than M1 and M2, in ATP(cid:2)Mg2(cid:1) or ATP(cid:2)Mg2(cid:1) and calculations to compare agreementwiththeAspRS(cid:2)ATPcrystalstructure(17).M3has 3 2 ATP(cid:2)Mg2(cid:1)andATP(cid:2)Mg2(cid:1)bindingtobothAspRSandLysRS. (cid:7)55watermoleculeswithina9-Åsphere,comparedwith40 3 2 Finally, we report the calculations to compare AspAMP and for the more strongly bound cations, 25 for the amino acid AsnAMPbindingtoAspRS(cid:2)tRNAinthepresenceofoneorno ligand backbone ammonium group, and 100 for bulk water. co-boundMg2(cid:1)cations. Finally,theATP(cid:3)-phosphateoxygennotpointingdirectlyto eitherM2orM3haswater-mediatedinteractionswithM2and Structure,Dynamics,andSolvationoftheAminoAcid,ATP, M3throughthewatermoleculescompletingthecationcoordi- andtRNABindingSitesinAspRS nationspheres.ForM2,thereisanexchangeinwatermolecules ThefirstsetofsimulationsweredoneforbothAspandAsn onthesub-100-psscale,sothatonlythewaterassociatedwith boundtoAspRS,co-boundwithATPandeitherthreeortwo M1andGlu-482aboveandthefourwaterscoordinatedtoM3 cations.TheCRFandPMEmethodsyieldverysimilarbinding aretrulyordered. pocket structures and dynamics. For the AspRS(cid:2)Asp(cid:2) WhenAsnreplacesAspintheaminoacidbindingsite,earlier ATP(cid:2)Mg2(cid:1) complex, the r.m.s. deviations from the starting freeenergysimulationsshowedthatHis-448losesitslabilepro- 3 crystal geometry were 0.7 and 1.4 Å for backbone and side- tonandbecomesneutral(36).Inotherrespects,thestructureis chain atoms, respectively. Fig. 3 illustrates the active site verysimilartotheAspcomplex.LifetimesofH-bondsstabiliz- dynamicsinatypicalseriesofsnapshotsfromtheMDtrajec- ingtheAsnbackbonegroupsarereducedbyaround10%com- tory. Fig. 3 was prepared using Molscript (48) and rendered paredwiththeAspcomplex,whereastheAsnside-chaincar- using Raster3D (49). The cognate Asp ligand makes a stable bonylbindsstronglytoArg-489butnottoLys-198.Overall,the networkofhydrogenbondstoseveralbindingpocketresidues, meannumberofH-bondsbetweentheaminoacidandAspRSis whichagreeverywellwiththeavailablecrystalstructures(17, reducedfrom10(Aspcomplex)to7(Asncomplex). 18,23)andpreviousMDsimulations(33–35).FromearlierpK WhenthethirdcationintheATP3-cationcomplex(M3)is a calculations(45),His-448isdoublyprotonated(36)andformsa removed,neitherATPnoritsbindingpocketundergoessignif- saltbridge to the Asp side-chain carboxylate. The Asp side icant displacements. The r.m.s. deviations of ATP and its chain and backbone amino group are also stabilized by immediateenvironmentfromthestartinggeometryare1.7and H-bondstoArg-489,Lys-198,aburiedwatermoleculeW1, 1.1Å,respectively,similartothoseseenforthe3-cationcom- Glu-171oftheclosedflippingloop,andGln-195.Thetermi- plexabove(1.4and1.2Å,respectively).Also,theterminaloxy- nalcarboxylateformsH-bondswithArg-217and,70%ofthe gens of the aa ligand remain within 3.5–4.9 Å of the ATP time,withGln-231. (cid:1)-phosphorusinboththe2-cationand3-cationsystems,simi- ATPretaineditsfullybentgeometry,characteristicofATP lartowhatwasobservedinHisRSsimulations(51).Overall,the bindingtoclassIIaaRSs(50),throughoutthesimulations.The MDstructuresofthe2-and3-cationcomplexeshaveacompa- activesitedynamicsshowninFig.3arefromtheE.colistruc- rableagreementwiththeavailablex-raystructures.Thiscon- ture (23), with ATP(cid:2)Mg2(cid:1) built in from the P.kodakaraensis firms that in the AspRS(cid:2)ATP crystal structure, if a 2-cation 3 structure(17)asdescribedaboveunder“ExperimentalProce- complexwerepresentin10or20%oftheunitcells,itwouldnot dures.”HerewefocusonthedynamicsoftheATPbindingsite have a noticeable effect on the observed electron density and in the P.kodakaraensis AspRS(cid:2)ATP complex. The principal couldnotbedetected.Therefore,todeterminetheprobability Mg2(cid:1)cationnearesttheaminoacid(labeledM1inTable4)is ofa2-cationcomplex,structuraldataisnotenough;freeener- stabilizedbyH-bondstotheATP(cid:1)-and(cid:2)-phosphatesandalso giesmustbecomputed.Finally,wenotethatthepK calcula- a toAsp-475andGlu-482.Twowatermolecules,oroccasionally tions (45) reported in Table 1 indicate that cation binding is 23796 JOURNALOFBIOLOGICALCHEMISTRY VOLUME281•NUMBER33•AUGUST18,2006 CationBindingandAspRSSpecificity TABLE1 ComputedprotonationstatesforthehistidinenexttothethirdMg2(cid:1)cationintheAspRS(cid:2)Asp(cid:2)ATP,AspRS(cid:2)Asn(cid:2)ATP,andLysRS(cid:2)Lys(cid:2)ATP complexes:His-223inP.kodakaraensisAspRSandHis-270inE.coliLysRS ThefinaltwoentriesareforE.coliAspRS(cid:2)aaAMP(cid:2)Mg2(cid:1)(cid:2)tRNAAsp,andcorrespondtoHis-448,closetotheadenylateligandandtheMg2(cid:1)cation. Complex (cid:2)G (cid:2)G (cid:2)(cid:2)Ga pK shift Hisstate sol prot a AspRS(cid:2)Asp(cid:2)ATP(cid:2)Mg2(cid:1) (cid:10)10.6 (cid:10)6.0 (cid:1)4.6(2.4) (cid:1)3.4 Neutral AspRS(cid:2)Asp(cid:2)ATP(cid:2)Mg32(cid:1) (cid:10)10.6 (cid:10)20.4 (cid:10)9.8(2.4) (cid:10)7.2 Charged AspRS(cid:2)Asn(cid:2)ATP(cid:2)Mg22(cid:1) (cid:10)10.6 (cid:10)4.1 (cid:1)6.3(2.2) (cid:1)4.6 Neutral AspRS(cid:2)Asn(cid:2)ATP(cid:2)Mg32(cid:1) (cid:10)10.6 (cid:10)20.9 (cid:10)10.3(2.4) (cid:10)7.5 Charged LysRS(cid:2)Lys(cid:2)ATP(cid:2)Mg2(cid:1)2 (cid:10)10.6 (cid:1)4.9 (cid:1)15.5(1.9) (cid:1)11.4 Neutral LysRS(cid:2)Lys(cid:2)ATP(cid:2)Mg32(cid:1) (cid:10)10.6 (cid:10)11.7 (cid:10)1.1(2.2) (cid:10)0.8 Charged/neutral AspRS(cid:2)AspAMP(cid:2)M2g2(cid:1)(cid:2)tRNAAsp (cid:10)10.6 (cid:10)19.1 (cid:10)8.5(1.6) (cid:10)6.2 Charged AspRS(cid:2)AsnAMP(cid:2)Mg2(cid:1)(cid:2)tRNAAsp (cid:10)10.6 (cid:10)7.5 (cid:1)3.1(1.3) (cid:1)2.3 Neutral/charged a(cid:8)(cid:8)G(cid:4)(cid:8)G (cid:10)(cid:8)G (inkcal/mol;seeRefs.36and45formoredetails)(sol,solvent;prot,protein).Uncertainty,showninparentheses,isestimatedfromthedeviationin computed(cid:8)prGot valsuoels,samplingevery4psalong0.5-nssegments. prot coupledtonearbyhistidinecharging.TheATPbindingpockets TABLE2 ofbothAspRSandLysRSfeatureahistidineresiduepointing MDFEandPBFEbindingfreeenergydifferences(cid:2)(cid:2)G(kcal/mol)for toward the ATP (cid:3)-phosphate (17, 28). The structure and AATspP(cid:2)vMegrs2u(cid:1)sAsninAspRS,aloneandwithco-boundATP(cid:2)Mg32(cid:1)and 2 dynamics of the LysRS substrate binding pocket will be PBFE(cid:8)(cid:8)GvaluesarealsogivenforAspAMPversusAsnAMPbindinginAspRS, described in detail elsewhere. This histidine is neutral in the withtRNAAspandeitheroneorzeroco-boundcations.MDFE(cid:8)(cid:8)Giscomputed fromthevertical,alchemicallegsinFig.1:(cid:8)(cid:8)G(cid:4)(cid:8)G (cid:10)(cid:8)G.Apositivesign presence of ATP(cid:2)Mg32(cid:1) but can gain a positive charge when correspondstopreferentialAspbinding.(cid:8)G1and(cid:8)G4a1recomp4utedbyalchemi- ATP(cid:2)Mg2(cid:1) is artificially changed to ATP(cid:2)Mg2(cid:1) (Table 1). As callytransformingAspintoAsn(orthereverse)duringaseriesofsimulations.The 3 2 MDFE(cid:8)(cid:8)Gvaluesareaveragesoverfour1.0-nsruns;PBFE(cid:8)(cid:8)Gvaluesarecom- shownintheenergeticanalysisbelow,thishistidinecharging putedfrom3nsnativeMDtrajectories,usingthehorizontal,bindinglegsinFig.1. doesnotfullycompensateforthecostofunbindingthethird AspRS(cid:1)indicatesadoublyprotonatedHis-448. cation,sothatthestatewiththreecationsisstronglyfavored Medium MDFE(cid:2)(cid:2)G PBFE(cid:2)(cid:2)G (Asp3Asn)a (Asp3Asn)b andalwayspresent. AspRS (cid:1)3(2) FollowingourextensiveanalysisofAspRSsubstratespecific- AspRS(cid:1) (cid:1)11(2) (cid:1)10(2) ityinthepreadenylationstep(presentworkandRefs.33–36), AAssppRRSS(cid:1)(cid:2)A(cid:2)ATTP(cid:2)PM(cid:2)Mg32g(cid:1)2(cid:1) (cid:1)(cid:1)199((33)) (cid:1)18(2) the last system we consider here involves AspAMP/AsnAMP AspRS(cid:2)ATP(cid:2)Mg2(cid:1)3 (cid:1)5(1) (cid:1)5(2) specificityinthepresenceofco-boundtRNAinthepost-adeny- AspRS(cid:1)(cid:2)aaAMP2(cid:2)Mg2(cid:1)(cid:2)tRNAAsp (cid:1)9(2) AspRS(cid:1)(cid:2)aaAMP(cid:2)tRNAAsp (cid:1)4(3) lationstep.Openingofthe“flippingloop”accompaniestRNA AspRS(cid:2)aaAMP(cid:2)Mg2(cid:1)(cid:2)tRNAAsp (cid:1)4(2) binding,asshowninthex-raystructure(18).Apartfromthe aMDFEvaluesarefromRef.36.Uncertainty(showninparentheses)inMDFEdata lossoftheGlu-171interaction,thestructureanddynamicsof isobtainedbyfirstaveragingeachpairofforward/backwardrunsandthentaking twicethedeviationamongpairs.Theestimateduncertaintyismuchsmallerthan the AspAMP binding site are similar to those in the thedifference(or“hysteresis”)betweenforwardandbackwardruns(seetext). Asp(cid:2)ATP(cid:2)AspRS systems described above, in agreement with bUncertaintyinPBFEdataisestimatedfromthedeviationincomputedPBFE(cid:8)(cid:8)G values,samplingevery4psalong1.0–3.0-nssegments. thex-raydata(17).Ther.m.s.deviationsofheavyatomsfrom thestartinggeometryinAspAMPanditsimmediateenviron- mentare0.7and1.0Å,respectively.AsnAMPisslightlymore Asp/AsnDiscriminationbyAspRSinthePresenceofATPand mobilethanAspAMPinthebindingpocket.Ther.m.s.devia- EitherThreeorTwoMg2(cid:1)Cations tions of AsnAMP and its immediate environment from the WefirstcomparedthebindingfreeenergiesofAspandAsn startinggeometryareboth1.1Å.AsshowninTable1,His-448 inthepresenceofATPwiththreeassociatedcations.Wecom- losesitsextraprotonandbecomesneutralinthepresenceof paredMDFEresults(someofthemobtainedearlier(36))with AsnAMPandaco-boundMg2(cid:1)cation.Thisdoesnotleadto the PBFE results obtained here. The data are summarized in significant changes in ligand or binding site structure; His- Table2.EachMDFE(cid:8)(cid:8)Gvaluewascomputedfromtwosolu- 448simplyswingsawayfromAsnAMPtowardthesolvent- tion simulations and four protein simulations (of ten 100-ps exposedsideoftheAspRSpocket.TheMg2(cid:1)cationassoci- windowseach;see“ExperimentalProcedures”).Insolution,one ated with the aaAMP phosphate maintains a strong runwasperformedineachdirection,mutatingAsptoAsnor coordination with Glu-482 and Asp-475 throughout the thereverse,yielding(cid:8)G (seeFig.1).Intheprotein,tworuns 1 dynamicsandhasanr.m.s.fluctuationofonly0.30Å,similar wereperformedineachdirection,yielding(cid:8)G (Fig.1).When 4 tothecationscoordinatingATPinthepreadenylationstep ATP(cid:2)Mg2(cid:1)isco-bound,(cid:8)(cid:8)G(cid:4)(cid:1)19kcal/mol,favoringAsp. 3 (above). The co-bound tRNAAsp molecule does not undergo This decreases to (cid:1)9 kcal/mol when His-448 is artificially significant deviations from its starting geometry. The r.m.s. maintainedinthesinglyprotonatedstate(36).NoticethatHis- deviation of the tRNA from its x-ray position is 1.4 Å, with 448isabsentfrommosteukaryoticAspRSs,beingreplacedby either AspAMP or AsnAMP co-bound. Finally, removing the an Arg that is more distant from the ligand site. PBFE free Mg2(cid:1) cation associated with aaAMP causes only a slight energyvaluesareobtainedfromtheverticallegsofthethermo- increase in structural disorder. The r.m.s. deviations for dynamiccycleinFig.1.Inthethreemostimportantstatesfor AspAMP, tRNA, and their immediate environments increase whichbothMDFEandPBFEsimulationswereperformed,the by0.1–0.2Åwhenthecationisartificiallyremoved. PBFEestimatesmatchtheMDFEvaluestowithin(cid:9)2kcal/mol. AUGUST18,2006•VOLUME281•NUMBER33 JOURNALOFBIOLOGICALCHEMISTRY 23797 CationBindingandAspRSSpecificity TABLE4 Electrostatic(PBFE)contributiontothebindingfreeenergiesofeach cationinAspRS(cid:2)ATP(cid:2)Mg2(cid:1)andLysRS(cid:2)ATP(cid:2)Mg2(cid:1)complexesandof thesingleremainingcat3ioninAspRS(cid:2)aaAMP(cid:2)M3g2(cid:1)(cid:2)tRNAAsp LysRS(cid:1)denotesLysRSwiththenear-M3His-270positivelycharged,andAspRS(cid:1) denotesAspRSwiththenear-M1His-448positivelycharged.(cid:8)Gvalueshavestand- arddeviationsof1–3kcal/molandwerecomputedfromatleast250MDsnapshots sampledevery4psovermulti-nanosecondMDtrajectories. Cationbinding(cid:2)G Complex M1 M2 M3 kcal/mol AspRS(cid:2)Asp(cid:2)ATP(cid:2)Mg2(cid:1) (cid:10)104 (cid:10)144 (cid:10)96 AspRS(cid:2)Asn(cid:2)ATP(cid:2)Mg32(cid:1) (cid:10)85 (cid:10)135 (cid:10)81 FIGURE1.Thermodynamiccycleusedforcomputationoftheaminoacid AspRS(cid:2)Asp(cid:2)ATP(cid:2)Mg23(cid:1)a (cid:10)110 (cid:10)138 (cid:10)103 fbaoriernldfirgienaegnedfnrmeereugetyancteihorangnyigndesisfoffloeurrteiAonsncneaasnn.dd(cid:8)eGAn1szpaynbmdine(cid:8),dGrien4sgrpetefoecterinvtoezylfyrm,eaeen.edne(cid:8)rGg2yacnhdan(cid:8)gGes3 ALLyyssspRRRSSS(cid:2)(cid:1)L(cid:2)A(cid:2)yLssyn(cid:2)As(cid:2)(cid:2)AATTTPP(cid:2)PM(cid:2)(cid:2)MMgg32g(cid:1)3322(cid:1)(cid:1)a (cid:10)(cid:10)(cid:10)111032924 (cid:10)(cid:10)(cid:10)111333730 (cid:10)(cid:10)(cid:10)1870483 AspRS(cid:1)(cid:2)AspAMP(cid:2)M3g2(cid:1)(cid:2)tRNAAsp (cid:10)117 TABLE3 AspRS(cid:1)(cid:2)AsnAMP(cid:2)Mg2(cid:1)(cid:2)tRNAAsp (cid:10)110 Electrostatic(PBFE)contributiontothebindingfreeenergiesfor aThestartingstructureistheP.kodakaraensisAspRS(cid:2)ATPcomplex(seeRef.17). AspRS(cid:2)Asp,LysRS(cid:2)Lys,andAspRS(cid:2)AspAMPcomplexationasa AllotherstartingstructuresarefromE.colicomplexes. functionofthenumberofboundMg2(cid:1)cations LysRS(cid:1)denotesLysRSwithHis-270positivelycharged;AspRS(cid:1)isAspRSwith His-448positivelycharged.(cid:8)Gvalueshavestandarddeviationsof1–3kcal/moland boundcationineachenzyme.Asolutedielectricconstantof4 werecomputedfromatleast250MDsnapshotssampledevery4psovermulti- was used, with structures sampled from the Asp(cid:2)AspRS, nanosecondMDtrajectories. Asn(cid:2)AspRS,andLys(cid:2)LysRSMDtrajectories. Complex Aminoacidligandbinding(cid:2)G FromTable4,itisclearthatM3istheleaststablecationinall kcal/mol thecomplexes.InAspRS,theorderofcationbindingstrengths AspRS(cid:2)Asp(cid:2)ATP(cid:2)Mg2(cid:1) (cid:10)38 AspRS(cid:2)Asp(cid:2)ATP(cid:2)Mg32(cid:1) (cid:10)31 isM2(cid:11)M1(cid:11)M3,irrespectiveoftheaminoacidligand.M3is LysRS(cid:2)Lys(cid:2)ATP(cid:2)Mg2(cid:1)2 (cid:10)61 onthesolvent-exposedsideofATP.Itsr.m.s.fluctuationsare LysRS(cid:1)(cid:2)Lys(cid:2)ATP(cid:2)M3g2(cid:1) (cid:10)61 LysRS(cid:2)Lys(cid:2)ATP(cid:2)Mg2(cid:1)3 (cid:10)60 about25%largerthanthoseofM1andM2.Ofthethreecations, LysRS(cid:1)(cid:2)Lys(cid:2)ATP(cid:2)M2g2(cid:1) (cid:10)59 M1,coordinatingtheATP(cid:1),(cid:2)-phosphatesAsp-475andGlu- AspRS(cid:1)(cid:2)AspAMP(cid:2)tR2NAAsp (cid:10)35 482, is the most strongly stabilized by Asp rather than Asn AspRS(cid:1)(cid:2)AspAMP(cid:2)Mg2(cid:1)(cid:2)tRNAAsp (cid:10)48 binding.Itsbindingfreeenergyis19kcal/mollowerwithbound AspthanwithboundAsn.M1isthecationclosesttotheamino This is comparable with the uncertainty in the MDFE values acid,andhenceitisthemoststronglyaffectedbythenetcharge themselves. oftheaminoacidligand.M2isthemosttightlyboundcation, WhenATPisassociatedwithonlytwocations,theAsp/Asn coordinatingthe(cid:2)-and(cid:3)-phosphatesandGlu-482.M2isfur- binding free energy difference decreases substantially, to thest from the amino acid binding site, and hence the least (cid:8)(cid:8)G (cid:4) (cid:1)5 kcal/mol, compared with 9 kcal/mol with affectedbytheaminoacididentity;itsbindingfreeenergyis9 ATP(cid:2)Mg2(cid:1)(Table2).AgreementbetweenMDFEandPBFEis kcal/mollowerwithboundAspthanwithboundAsn.M3,the 3 good.Thus,eventhoughthethirdMg2(cid:1)cationis11Åaway most weakly bound cation, coordinates the (cid:2)- and (cid:3)-phos- fromthe(cid:3)-carbonoftheligandsidechain,itinteractsstrongly phatesbutnotprotein.M3isintermediateindistancefromthe withtheaminoacidligandandstronglyfavorsthenegativeAsp aminoacidpocketandintermediateinitsenergetics;itsbind- overneutralAsn.Consistentwiththisfinding,PBFEestimates ingfreeenergyis15kcal/mollowerwithboundAspthanwith ofaminoacidbindingstrengthsinTable3showthatremoving bound Asn. This situation can be compared with the LysRS the third cation strongly reduces Asp binding to AspRS. The case.Table4showsclearlythatinLysRS,M3isagainthemost results for LysRS are also shown in Table 3. We see that Lys weakly bound cation. M1 and M2 have similar binding bindingtoLysRSisnotsensitivetothenumberofMg2(cid:1)cations strengths;botharestronglystabilizedbynearbyLysRSgluta- present,despiteitspositivechargeandincontrasttothelarge materesidues. effectofthecationsinAspRS.Thisisshownbythenearequality Relative Stabilities of the ATP(cid:2)Mg2(cid:1) and ATP(cid:2)Mg2(cid:1) Com- 3 2 oftheLysbindingfreeenergiesfortheLysRS(cid:2)Lys(cid:2)ATP(cid:2)3-cation plexes in Alchemical MDFE Simulations—ATP co-binding complex(witheitherneutralorchargedHis-270)andforthe alongwiththreedivalentcationsissupportedbutnotprovedby 2-cationcomplex(witheitherneutralorchargedHis-270).In the AspRS(cid:2)ATP and LysRS(cid:2)ATP crystal structures (17, 28). thenextsection,weshowthatinbothAspRSandLysRS,ATP Indeed,thecrystallographicdatacannotruleoutapartialoccu- alwaysbindswithallthreecations. pancyforthethirdcation.Inotherwords,thethirdcationcould bepresentinfewerthan100%ofthecrystalcells.Fromthedata StabilityoftheATP(cid:2)Mg2(cid:1)ComplexinAspRSandLysRS 3 presentedabove,apartialoccupancy,evenashighas80or90%, Identifying the Most Weakly Bound Cation—X-ray crystal wouldhaveasignificanteffectontheAsp/Asndiscrimination structuresofATPboundtoAspRSandLysRSshowthatboth inAspRS.Therefore,weperformedalchemicalfreeenergysim- AspRSandLysRSareamongtheclassIIsynthetasesthatpref- ulations in which the third Mg2(cid:1) cation, M3, was reversibly erentiallybindthreedivalentcations(17,28).PBFEcalculations transformed into a water molecule, both in the enzyme and reported in Table 4 were used to identify the most weakly aloneinsolution.Thiscationwaschosenbecauseitisthemost 23798 JOURNALOFBIOLOGICALCHEMISTRY VOLUME281•NUMBER33•AUGUST18,2006 CationBindingandAspRSSpecificity TABLE5 StabilityofthethirdMg2(cid:1)cationinAspRSandLysRSATP(cid:2)3-cation complexesusingMDFE Energiesareinkcal/mol.(cid:8)GcorrespondstothemutationofMg2(cid:1)intoawater molecule.LysRS(cid:1)denotesLysRSwiththenear-M3His-270positivelycharged. “Forward”runstransformMg2(cid:1)intoawater;“backward”runstransformawater intoMg2(cid:1).(cid:8)Ginproteiniscomputedforeachsystemfromthefour(cid:8)Gvalues given,correspondingtorunsfromindependentstartingstructures.Apositive(cid:8)(cid:8)G FIGURE 2. Thermodynamic cycle for binding of the third cation in correspondstopreferentialMg2(cid:1)bindingtotheenzyme.Uncertainty(shownin AspRS(cid:2)Asp(cid:2)ATP.Ananalogouscyclewasusedforbindingofthethirdcation parentheses)isobtainedbyfirstaveragingeachpairofforward/backwardrunsand inLysRS(cid:2)Lys(cid:2)ATP. thentakingtwicethedeviationamongpairs. weakly bound of the three (Table 4). The data were analyzed Medium Dailrcehcetmioincaolf (Mg2(cid:1)(cid:2)3Gwater) (cid:2)(cid:2)G mutationrun withthethermodynamiccycleinFig.2.Thedoublefreeenergy difference (cid:8)(cid:8)G represents the standard free energy for bind- Solution Forward (cid:1)430 Solution Backward (cid:1)438 ing the third cation to the preformed AspRS(cid:2)aa(cid:2)ATP(cid:2)Mg2(cid:1) AspRS(cid:2)Asp(cid:2)ATP(cid:2)Mg2(cid:1) Forward (cid:1)534/(cid:1)528 complex. 2 ALysspRRSS(cid:2)L(cid:2)Ayssp(cid:2)A(cid:2)ATTPP(cid:2)M(cid:2)Mgg2(cid:1)222(cid:1) BFoarcwkwaradrd (cid:1)(cid:1)458121//(cid:1)(cid:1)550127 (cid:1)78(10) Table 5 shows the computed free energy changes. We LysRS(cid:2)Lys(cid:2)ATP(cid:2)Mg22(cid:1) Backward (cid:1)452/(cid:1)468 (cid:1)53(8) obtainedlargedeviationsbetweenforwardandbackwardruns LysRS(cid:1)(cid:2)Lys(cid:2)ATP(cid:2)M2g2(cid:1) Forward (cid:1)500/(cid:1)480 inenzyme(i.e.whereMg2(cid:1)ismutatedintowaterorthereverse; LysRS(cid:1)(cid:2)Lys(cid:2)ATP(cid:2)Mg222(cid:1) Backward (cid:1)465/(cid:1)434 (cid:1)36(16) third column in Table 5). In fact, previous experience with chargingfreeenergycalculationsinAspRSandothersystems lowerthanthestandardstatevalue.Overall,forbothAspand suggeststhatwhenforwardandbackwardresultsareaveraged, Asn,thethirdcationismuchmorestableboundtoAspRSthan there is a significant compensation of errors. For example, aloneinsolution,andsoATPalwaysbindstoAspRSwithall when Asp is transformed into Asn in AspRS, there is a large three associated Mg2(cid:1) cations; the Boltzmann probability of forward/backward free energy hysteresis, but the forward/ the2-cationstateisinfinitesimal.Thesamequalitativeresultis backwardaveragechangesbylessthan4kcal/molwhentherun foundforLysRS;the3-cationcomplexisfavoredby52kcal/mol lengthisdoubled(seesupplementalmaterial).Thus,estimated in the standard state and by at least 47 kcal/mol at cellular statisticaluncertaintyisobtainedbyfirstaveragingpairsoffor- concentrations.Itiseasytoshow,usingthedatainTables1and ward/backwardrunsandthentakingtwicethestandarddevia- tionamongthese.ForMg2(cid:1)bindingtoLysRS(cid:1),thestandard 5,thatstatesinwhichtheaaRS(cid:2)aa(cid:2)ATPcomplexbindsonlyone errorestimate(16kcal/mol)isabouthalfthecomputed(cid:8)(cid:8)G or no Mg2(cid:1) cations are negligibly populated compared with eventheaaRS(cid:2)aa(cid:2)ATP(cid:2)Mg2(cid:1)states.NotethatMg2(cid:1)competi- (36 kcal/mol). Thus, even though the precision of the MDFE 2 dataislow,thepredictedMg2(cid:1)bindingtrendsareverystrong tion with monovalent ions is also insignificant, because the andcanbetakenasqualitativelyaccurate. most abundant ion, potassium, has a concentration of about Whenthe third cation binds, the nearby His protonation 150mM.ThestandardbindingfreeenergyofK(cid:1)canbeesti- statecanchange,asshowninTable1.Tocomparethemost mated from electrostatic considerations to be weak, on the relevant states with 2 and 3 bound cations, the MDFE data orderofhalfthatofthethirdMg2(cid:1)cation.Thus,mixedcom- mustbecombinedwiththecomputedprotonationfreeener- plexessuchasATP(cid:2)Mg22(cid:1)(cid:2)K(cid:1)areexpectedtobenegligiblypop- gies(Table1).Thus,whenthethirdcationbindstoLysRS(cid:1), ulatedinbothAspRSandLysRS. the nearby His-270 becomes deprotonated, and the free To identify the most important interactions stabilizing the energyisloweredbyanadditional16kcal/mol(Table1).The thirdcation,weperformedagroupdecompositionofthecom- overallbindingfreeenergyofthethirdcationtoLysRSisthere- puted binding free energy based on Equation 2 (46, 43). The fore estimated to be (cid:10)36(cid:10)16 (cid:4) (cid:10)52 kcal/mol, correspond- resultingfreeenergycomponentsaregiveninTable6.Avery ing to the process Mg2(cid:1) (cid:1) LysRS(cid:1)(cid:2)Lys(cid:2)ATP(cid:2)Mg2(cid:1) 3 large,favorablecontribution((cid:1)367kcal/mol)comesfromthe LysRS(cid:1)(cid:2)Lys(cid:2)ATP(cid:2)Mg2(cid:1)3LysRS(cid:2)Lys(cid:2)ATP(cid:2)Mg2(cid:1)(cid:1)H(cid:1).N2 otice ATP(cid:2)Mg2(cid:1)moietyitself,eventhoughitiselectricallyneutral. that the estimated u3ncertainty in the compu3ted protonation Another2(cid:1)126 kcal/mol come from the conserved Glu-482/ freeenergyismoderate(Table1).Similarly,forAspRS,wecon- Asp-475sidechains,eventhoughtheseare6/9Åawayandare sidertheprocessMg2(cid:1)(cid:1)AspRS(cid:1)(cid:2)Asp(cid:2)ATP(cid:2)Mg2(cid:1)3Mg2(cid:1)(cid:1) primarilyinvolvedincoordinatingtheothertwocations.The 2 AspRS(cid:2)Asp(cid:2)ATP(cid:2)Mg2(cid:1)(cid:1)H(cid:1)3AspRS(cid:2)Asp(cid:2)ATP(cid:2)Mg2(cid:1)(cid:1)H(cid:1). contribution of solvent is small at (cid:10)73 kcal/mol (opposing 2 3 The total binding free energy is (cid:1)10(cid:10)78 (cid:4) (cid:10)68 kcal/mol. binding). The solvent contribution can be interpreted as a Finally, the four AspRS(cid:2)aa(cid:2)ATP(cid:2)Mg2(cid:1) systems (aa (cid:4) Asp or dielectric shielding of the negative charges that favor Mg2(cid:1) n Asn;n(cid:4)2or3)formathermodynamiccycle,allowingustoinfer binding. Other protein groups make much smaller contribu- also the free energy for binding the third cation to the AspRS(cid:2) tions. For example, the net contribution of the nearby salt Asn(cid:2)ATP(cid:2)Mg2(cid:1)complex.Giventhatbindingofthethirdcation bridgepair,Glu-219/Arg-225,isjust(cid:1)11kcal/mol,andnearby 2 inAspRS(cid:2)Asp(cid:2)ATPisfavoredby68kcal/mol,thethirdcationin Glu-171 and Arg-217 contribute just (cid:1)14 kcal/mol. The Asp AspRS(cid:2)Asn(cid:2)ATPisfavoredby59kcal/mol. ligand contributes (cid:1)45 kcal/mol. Overall, M3 binding is TheconcentrationofMg2(cid:1)inthecellisontheorderof1mM favoredlargelybyATP(cid:2)Mg22(cid:1),theconservedGlu-482/Asp-475 (52).Thefreeenergychangesreportedabovecorrespondtoa pair, and the Asp ligand. On balance, these groups stabilize standardstateof1MMg2(cid:1).Thus,atphysiologicalMg2(cid:1)con- cation(cid:2)proteinbindingcomparedwithcationsolvationinbulk centrations, the binding free energy is at most 3–5 kcal/mol water(Tables5and6). AUGUST18,2006•VOLUME281•NUMBER33 JOURNALOFBIOLOGICALCHEMISTRY 23799 CationBindingandAspRSSpecificity TABLE6 directly.Nevertheless,severallinesofargumentstronglysug- FreeenergycomponentsforthestabilityofthethirdMg2(cid:1)cationin gestthatourmainresultsaremeaningful. theAspRSATP(cid:2)3-cationcomplexusingalchemicalMDFEsimulations Forthecrucial,longrange,electrostaticinteractions,weused Energiesareinkcal/mol.(cid:8)GcorrespondstothemutationofMg2(cid:1)intoawater molecule; total (cid:8)G (cid:4) (cid:1)528 kcal/mol (Table 5), comprising the sum of the two recent, sophisticated methods, including one that com- ATP(cid:2)Mg22(cid:1),water,Aspligand,andtotalproteincontributions,togetherwith(cid:1)15 bines an atomic representation of groups near the active site kcal/molforthePoisson-Boltzmanncontinuumcorrection(seeRef.33fordetails) and(cid:1)2kcal/molforvanderWaalsinteractions.Apositivecomponentindicates withacontinuumrepresentationofdistantgroups(37,47).The stabilizationofMg2(cid:1)bindingtotheenzyme. simplifiedtreatmentofdistantgroupsisquiteaccurate.Indeed, Group Component calculationsthatuseatomicregionsofdifferentsizesgivevery WATaPte(cid:2)Mr g22(cid:1) (cid:1)(cid:10)37637 similar free energy changes. We note that although substrate Aspligand (cid:1)45 interactions with distant groups have been observed experi- Asp-475 (cid:1)48 mentally and discussed extensively, they are weak compared Glu-482 (cid:1)78 Glu-219 (cid:1)32 with the effects of interest here. For example, AspRS is a Arg-225 (cid:10)21 homodimer, and a certain cooperativity is found for Asp and Glu-171 (cid:1)37 Arg-217 (cid:10)23 ATPbindingtothetwoactivesites(53).Butthetwobinding constantsforATPdifferbyafactorofonly10,correspondingto 1.4 kcal/mol of binding free energy; Mg2(cid:1) effects are much AspAMP/AsnAMPDiscriminationinthePresenceoftRNAand larger. EitherOneorZeroMg2(cid:1)Cations Toobtainthermodynamicinformation,wedidMDFEsimu- TofurtherprobetheroleofcationsinAspRSsubstratebind- lations. MDFE has given reasonable accuracy for several pro- ing specificity, we performed simulations of AspAMP and teinswheredirectexperimentalcomparisonswerepossible;see AsnAMP binding to AspRS in the presence of a single Mg2(cid:1) recentworkonredoxpotentials(54),side-chainpK shifts(55), cationandtheco-substratetRNA.Thissystemcorrespondsto andprotein(cid:2)proteinbinding(56,57).ItsvalidityforaAspRSwas thepost-adenylationstep,immediatelybeforetRNAaminoacy- testedearlierbycomparisonwithexperimentalmeasurements lation.AMg2(cid:1)cationisgenerallythoughttobeassociatedwith ofAsp-stimulatedpyrophosphateexchange(36).Wemadesys- the aaAMP substrate (15), although its position is not always tematic comparisons with PBFE, an independent method explicitly determined in x-ray structures. In our MD simula- that has been extensively calibrated and tested for AspRS, tions, the cation remained strongly coordinated to the con- andfoundgoodagreement.Wealsoexploredthesensitivity served acidic residues Glu-482 and Asp-475 in the binding of our results to system details by studying several AspRS pocket.PBFEcationbindingcalculations(Table4)confirmthat variants:E.coliAspRSwithandwithouttRNAandP.kodak- theMg2(cid:1)cationisverystronglyheld,withanestimatedelec- araensis AspRS. Considering the different amino acid trostatic contribution to the binding free energy of 100 kcal/ ligandsandthenumbersofMg2(cid:1)cationsandHisprotona- mol.Thisiscomparablewiththetwostrongestcationsinthe AspRS(cid:2)aa(cid:2)ATP(cid:2)Mg2(cid:1) complexes (Table 4). PBFE calculations tionstates,wesimulated24differentsystemsforover75ns, 3 whichisseveraltimesthetotalsimulationlengthinrelated reported in Table 2 show that this cation is crucial for studies(54,55,56). AspAMP/AsnAMP discrimination. For AspRS with the Severalpredictionscouldbetestedexperimentally,inprin- co-bound cation and a positively charged His-448, we com- ciple.ForLysRS,onecouldmeasuretheeffectofMg2(cid:1)onthe puted an AspAMP/AsnAMP binding free energy difference (cid:8)(cid:8)G of (cid:1)12 kcal/mol in favor of AspAMP. pK calculations Lys affinity (predicted here to be small) using an established a fluorescence assay (58). For both AspRS and LysRS, we pre- (Table 1) indicate a preference for neutral His-448 when dictedthatATPisalwaysboundwiththreeMg2(cid:1)cations,so AsnAMPreplacesAspAMP,witha3kcal/molfreeenergygain that the rate constant, k , for the chemical adenylation step whenHis-448becomesneutral.Wethereforesubtractedthis3 cat kcal/mol(Table1)fromourPBFE(cid:8)(cid:8)G,givingacorrected(cid:8)(cid:8)G should be independent of Mg2(cid:1) concentration. We look for- of (cid:1)9 kcal/mol in favor of AspAMP (Table 2). Artificially wardtothesepredictionsbeingtestedbyothers. ComplexityoftheAminoAcidBindingReaction—AspRS(cid:2)aa removingthecationreducestheAspAMP/AsnAMPdifference strongly,witha(cid:8)(cid:8)Gofjust(cid:1)4kcal/mol.Interestingly,ifone recognitionisespeciallycomplexbecauseitinvolves“hidden” keepsthecationbutartificiallyswitchesHis-448toitsneutral reorganization, substrate-assisted specificity, and long range state,oneobservesthesameneteffect,witha(cid:8)(cid:8)Gofjust(cid:1)4 interactions.Indeed,thebindingpocketislargelypreorganized, kcal/mol. This offers a further illustration of the coupling and rearrangement upon aa binding is mostly limited to the betweencationsintheATP/AMPbindingsiteandtheionizable flippingloop,whichbringsitsnegativeGlu-171intothepocket. His-448,neartheaminoacidsidechain. However, a hidden reorganization also occurs, with His-448 bindingaprotontoopposetheGlu-171charge.Thislabilepro- DISCUSSION tonfavorsAspbindingandhelpsdiscriminateagainstAsn. Validation of Simulation Methodology—Despite the power ATP(cid:2)Mg2(cid:1) acts as another mobile discriminator, so that 3 of modern structural biology, molecular recognition is too AspRSspecificityissubstrate-assisted.ThemostdistantMg2(cid:1) complextobecompletelyunderstoodwithexperimentsalone: cation contributes 4 kcal/mol to the Asp/Asn binding free crystalstructuresdonotshowelectricfields.MDgivescomple- energydifference.Thestrengthofthecouplingbetweentheaa mentaryinformationthatisdifficulttoobtainexperimentally. sidechainandthiscationisremarkable,giventhattheyare11Å Forthesamereason,someofourpredictionsarehardtotest apart. We note that analogous couplings have been observed 23800 JOURNALOFBIOLOGICALCHEMISTRY VOLUME281•NUMBER33•AUGUST18,2006 CationBindingandAspRSSpecificity M3, respectively. Their negative charges,alongwiththefournegative phosphate charges, exactly balance thechargesoftheMg2(cid:1)cations.A large, unfavorable contribution ((cid:10)73kcal/mol)arisesfromsolvent, correspondingtoadielectricshield- ing of the negative charges in the binding pocket. Finally, the Asp ligand itself contributes (cid:1)45 kcal/ mol,anotherexampleoflongrange couplingintheAspRSactivesite. Mg2(cid:1)ContributestoAspRSSpec- ificity in Synergy with Other Active SiteGroups—Thisandearlierstud- ies show that AspRS amino acid specificity arises from a complex network of electrostatic interac- tions involving conserved side FIGURE3.Wall-eyedstereoviewof11snapshotsoftheAspRS(cid:2)Asp(cid:2)ATPactivesiteat20-psintervals,from chains and other factors. We have thelast200psoftheMDtrajectory.AspandATPareshowninball-and-stickrepresentation.Mg2(cid:1)cations areshownasyellowspheres.Themostweaklyboundcation,M3,isinfront.Importantbindingpocketresidues focusedhereonATPanditsassoci- arelabeledandcoloredaccordingtocharge:red,negative;blue,positive;orange,neutral.Astablewater atedcationsfoundtoplayanimpor- moleculeisshowningreenandlabeledW.Theproteinbackboneisshownintuberepresentationwithflipping tantrole.Thesimulationsshowthat loopresiduescoloredgreen.ThisfigurewaspreparedusingMolscript(48)andRaster3D(49). iftheweakestboundMg2(cid:1)cationis removed, the Asp/Asn discrimina- betweenaaandATPbindinginotheraaRSs,e.g.ThrRS(59)and tion is strongly reduced. The binding free energy difference MetRS(60).Butthecouplingherewassignificantlylarger. (cid:8)(cid:8)G drops from 9(cid:9)2 to 5(cid:9)2 kcal/mol. The Asp and Asn Anotherlongrangeeffectisthecouplingbetweenthelabile dissociationconstantsthendifferbyafactorofbetween10(cid:10)2.2 His-448protonandthethirdMg2(cid:1)cation.Indeed,wepredict and10(cid:10)5.1.Therangeofvaluesreflectstheuncertaintyinthe (36)thatwhenATP(cid:2)Mg2(cid:1)(butnotATP(cid:2)Mg2(cid:1))bindswithAsn MDFEestimation.Ifthethirdcationwereabsent10%ofthe 3 2 insteadofAsp,His-448willreverttoitsneutralform.Similarly, time, and we averaged correspondingly over the 2- and His-254ispredictedtobeneutralwhenthethirdMg2(cid:1)ispres- 3-cation states, the average Asp and Asn dissociation con- entandpositivewhenitisabsent. stantswoulddifferbyafactorofbetween10(cid:10)3.2and10(cid:10)6.1. Mg2(cid:1) Binding Is Governed by Charge Balance and Long This is roughly comparable with the average error rate in RangeInteractions—TheATPphosphategroupsaredeproto- proteinsynthesis,0.03%(cid:4)10(cid:10)3.5. nated at physiological pH, so that ATP interacts readily with ThisestimateassumesthatHis-448ispresent.Infact,His- cations. In solution, ATP usually binds one divalent cation. 448isconservedinprokaryotesbutabsentineukaryotes.For- Whencomplexedtoaprotein,itusuallybindsoneortwo(25). tunately,wefoundthatAspRSis,infact,protectedagainstthe Yetoursimulationsshowthatthe3-cationformisoverwhelm- 2-cation state, which is negligibly populated in all cases. By inglyfavoredinAspRS.Giventheroleofthethirdcation,M3,in eliminatingthe2-cationformandalwaysbindingATP(cid:2)Mg2(cid:1), 3 AspRSspecificity,wewanttounderstanditsstability. AspRS ensures a large Asp/Asn discrimination even in ATPbindspreferentiallytoall10classIIaaRSswitheither eukaryotes,whereHis-448isabsent. threedivalentcationsortwocationsandapositiveproteinside TheMg2(cid:1)cationsandtheconservedsidechainsthatcoor- chain(seethedatabaseanalysisinthesupplementalmaterial). dinate them are required for AspRS activity, and the cations The fully bent, U-shaped geometry of ATP in AspRS is also playbothastructuralandacatalyticrole.Itseemseconomical characteristicofclassIIaaRSsandmightbethoughttoplaya that the enzyme should also use them for a third purpose, to roleinM3stabilization.ExcludingaaRSs,onlytwoofthe238 helpensuresubstratespecificity.Incontrast,theevolutionarily nonredundant NTP(cid:2)protein complexes in the Protein Data related LysRS also binds ATP only in the 3-cation form, but Bankexhibitsuchafullybentform(seesupplementalmaterial). artificiallyremovingthethirdcationdoesnotaffectbindingof ThemostobviousM3interactions(Fig.3)arewiththeATP the(positivelycharged)Lyssubstrate. (cid:2)-and(cid:3)-phosphatesandsurroundingwaters,andATP(cid:2)Mg2(cid:1) Fig.4summarizesthesubstratebindingspecificityinAspRS 2 doesmakeaverylargecontributiontoM3binding((cid:1)367kcal/ asdeterminedfromthepresentsimulationsandearlierstudies. mol; Table 6). But these groups are not unique to AspRS or Manydifferentstatesarepotentiallyavailable,themostimpor- aaRSs,sothatthestabilityofM3issomethingofapuzzle.In tantofwhichareshowninFig.4.Someofthemproducealow fact,longerrangeinteractionsareatplay.Thesewereidenti- Asp/Asnspecificity,andthesestatesareinvariablyunstableand fiedbythegroupdecompositionofthebindingfreeenergy. negligiblypopulated.Overall,adelicateinterplaybetweencon- A large contribution ((cid:1)126 kcal/mol) comes from the con- formationalshifts,ATP(cid:2)Mg2(cid:1)binding,andhistidinecharging 3 servedGlu-482andAsp-475sidechains,6and9Åawayfrom allowsAspRStocombineamoderateAspbindingaffinitywith AUGUST18,2006•VOLUME281•NUMBER33 JOURNALOFBIOLOGICALCHEMISTRY 23801

Description:
calculations and the vertical legs for more rigorous, alchemical, UMg2. (Eq. 1) where is a weight or “coupling parameter” and U0 represents interactions .. mentally and discussed extensively, they are weak compared with the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.