©EntomologicaFennica.11October2006 Molecular data supports the inclusion of Ildobates neboti Español in Zuphiini (Coleoptera: Carabidae: Harpalinae) IgnacioRibera,SergioMontagud,SantiagoTeruel&XavierBellés Ribera,I.,Montagud,S.,Teruel,S.&Bellés,X.2006:Moleculardatasupports the inclusion of Ildobates neboti Español in Zuphiini (Coleoptera: Carabidae: Harpalinae).—Entomol.Fennica17:207–213. The phylogenetic relationships of Ildobates neboti Español (Coleoptera: Carabidae:Harpalinae)wereinvestigatedbasedonthreenucleargenes(full18S rRNA,andafragmentofeach28SrRNAandwingless).Wecompiledadataset usingpublishedsequencesof32membersofHarpalinaeincludingoneexample eachofDryptini(genusDesera),Galeritini(Galerita)andZuphiini(Thalpius), plus three Brachininae as outgroups. These three tribes form the “Dryptitae”, withinwhichvariousrelationshipsofIldobateshadbeenproposed.Theanalyses ofthedatamatrixusingparsimony(withequallyweightedandreweightedchar- acters) and Bayesian posterior probabilities all support the monophyly of the three tribes in “Dryptitae”, as well as a closest relationship of Ildobates with ThalpiustotheexclusionofDeseraplusGalerita.Thisconfirmsthepreviousin- clusion of Ildobates among the Zuphiini, and corroborates current taxonomic classificationsbasedonmorphologicalcriteria. I.Ribera,DepartamentodeBiodiversidadyBiologíaEvolutiva,MuseoNacional deCienciasNaturales,JoséGutiérrezAbascal2,28006Madrid,Spain;E-mail: [email protected] S. Montagud and S. Teruel, Museu Valencià d’Història Natural (Fundación EntomológicaTorresSala).PaseodelaPechina15,46008Valencia,Spain;E- mail:[email protected] X. Bellés, Department of Physiology and Molecular Biodiversity, Institut de BiologiaMoleculardeBarcelona(CID,CSIC),JordiGirona18,08034Barce- lona,Spain;E-mail:[email protected] Received12December2005,accepted6April2006 1.Introduction MediterraneancoastofSpain,intheprovinceof Castellón (Ortuño et al. 2004). Although in the Among the diverse fauna of Coleoptera of the originaldescriptionthespecieswasidentifiedasa Iberian peninsula, Ildobates neboti Español “Dryptidae”(Español1966),itspreciserelation- stands out as one of the most emblematic taxa, shipswerecontentious,withcharactersrelatingit both because of its morphology [with extreme to several of the tribes within the group [see modificationsforcavelife(Español1966,Bellés Ortuñoetal.(2004)forasummaryofthetaxo- 1987)] and its rarity, being known for only a nomic history of the species]. The current con- handful of specimens from three caves in the sensus view seems to include Ildobates among 208 Riberaetal. (cid:127) ENTOMOL.FENNICAVol.17 Table1.Sequencesusedinthestudy.TaxonomicordinationfollowsLöbl&Smetana(2003). No Subfamily Tribe Species 28SrRNA wingless 18SrRNA 1 BRACHININAE BrachinushirsutusBates AF398693 AF398572 AF012478 2 PheropsophusaequinoctialisLinné AF398678 AF398619 AF012477 3 AptinusdisplosorDufour AF398638 AF398569 AF012480 4 HARPALINAE Anthiini Cypholobasp. AF398695 AF398584 5 Calophaenini Calophaenasp.n. AF398666 AF398575 6 Catapieseini CatapiesisbrasiliensisGray AF398645 AF398577 AF012476 7 Chlaeniini ChlaeniusruficaudaChaudoir AF398680 AF398578 AF002777 8 Cnemalobini CnemalobussulciferPhilippi AF398706 AF398580 AF012474 9 Ctenodactylini LeptotrachelusdorsalisFabricius AF398646 AF398599 10 Cyclosomini TetragonoderuslatipennisLeConte AF398653 AF398631 AF012471 11 Graphipterini GraphipteruscordigerDejean AF398711 AF398593 12 Harpalini DiscoderuscordicollisHorn AF398652 AF398588 AF002776 13 Pelmatellussp. AF398690 AF398615 AF398720 14 Helluonini Omphrasp. AF398657 AF398610 15 Lachnophorini CalybelaetulaLeConte AF398705 AF398576 AF002772 16 Lebiini CymindispuntigeraLeConte AF398651 AF398583 AF002773 17 Licinini DicaelusambiguusLaFerté-Sénectère AF398655 AF398586 18 Loxandrini Loxandrusnr.amplithoraxStraneo AF398661 AF398600 AF002778 19 Metriini Metriussp. AF398654 AF398604 AF012475 20 Morionini MorionaridusAllen AF398698 AF398606 AF002783 21 MoriosomusseticollisMacLeay AF398701 AF398607 AF398721 22 Odocanthini ColliurispennsylvanicaLinné AF398712 AF398581 23 Oodini StenocrepiselegansLeConte AF398668 AF398627 24 Orthogoniini Orthogoniussp. AF398709 AF398611 AF398719 25 Panagaeini PanagaeussalleiChaudoir AF398691 AF398612 26 Peleciini Peleciumnr.sulcipenneChaudoir AF398672 AF398614 AF398715 27 Perigonini PerigonanigricepsDejean AF398665 AF398617 28 Platynini AgonumextensicolleSay AF398643 AF398564 AF002775 29 Pseudomorphini Pseudomorphanr.angustataHorn AF398714 AF398622 AF002782 30 Sphallomorphasp. AF398679 AF398636 AF398717 31 Pterostichini PterostichusmelanariusIlliger AF398707 AF398623 AF002779 32 Zabrini AmaraapricariaPaykull AF398694 AF398565 AF002774 33 “Dryptitae” Galeritini GaleritaleconteileconteiDejean AF398686 AF398590 AF002780 34 Dryptini DeseraaustralisPéringuey AF398659 AF398585 per.com. 35 Zuphiini Thalpiusnr.rufulusLeConte AF398697 AF398632 AF002781 36 IldobatesnebotiEspañol AM051084 AM051083 DQ130051 theZuphiini,asreflectedinthemostrecenttaxo- aimistoprovideforthefirsttimeasoundphylo- nomic catalogues [both Iberian (Serrano 2003) genetic ground for the taxonomic placement of and Palaearctic (Löbl & Smetana 2003)] and in thisemblematicspecies,aswellastomakefeasi- morphological studies (Ortuño et al. 2004). At ble future studies on its evolutionary and geo- present,however,therearenophylogeneticstud- graphicoriginbytheidentificationofitspotential ies(eithermorphologicalormolecular)including closestlivingrelatives. Ildobates,thereforealldiscussionsonitsrelation- shipshavebeenpurelydescriptive. Inthiscontributionwepresentthefirstformal 2.Materialandmethods phylogenetic study including Ildobates neboti, based on sequences of three nuclear gene frag- 2.1.DNAextractionandsequencing mentsandincludingagoodtaxonomiccoverage ofHarpalinae(withoneexampleeachofthethree GenomicDNAwasobtainedthroughastandard tribestowhichIldobateshasbeenrelated).Our phenol-chloroform extraction using abdominal ENTOMOL.FENNICAVol.17 (cid:127) PhylogeneticpositionofIldobatesneboti 209 tissue(voucherspecimenkeptinX.Belléscoll., constructed with only the species for which all DNA aliquots kept in the MNCN ref. 6409). genes were available (26 including Ildobates), Three nuclear fragments were amplified, those andallsubsequentanalyseswereconductedwith for which there were enough published se- thisdataset. quences of related species: the full 18S rRNA, andafragmentofeachwinglessand28SrRNA. The18SrRNAsequencewasobtainedbydi- 2.3.Phylogeneticanalyses rect sequencing of four overlapping fragments amplified with internal primers (see Shull et al. Three hyper-variable regions of the 18S rRNA 2001 for details of the primers and PCR condi- gene and six of the 28S rRNA gene were ex- tionsused).Bothforwardandreversesequences cludedfromtheanalyses,andtheremainingse- were obtained for each fragment, which were quencewasalignedbyhand.Toalignthewing- contigged and edited using Sequencher 4.2 less gene we translated the nucleotide sequence (GeneCodesCorporation).Thewinglessand28S with McClade 4.0 (Maddison & Maddison rRNAsequenceswereobtainedusingtheprimers 2000),andalignedtheaminoacidsequenceman- andthePCRprotocoldescribedinOber(2002). ually.Thenucleotidesequencewasthusaligned Accession numbers for the sequences are usingtheaminoacidsequenceasatemplate.An DQ130051(18SrRNA),AM051083(wingless) additionaldatasetwasconstructedwiththeonly andAM051084(28SrRNA)(Table1). fourspeciesof“Dryptitae”includedintheanaly- ses(Table1),withthefullsequences(including hypervariable regions), which were aligned by 2.2.Additionalmoleculardata hand.Thiswasaimedtoincreasethesupportfor theinternalnodeswithinthegroup. WerestrictedouranalysestoHarpalinae, asthe ParsimonyanalysiswasconductedinPAUP* inclusionofIldobateswithinthiscladeisnotcon- version4.0b10(Swofford2002)usingTBRheu- tentious.WeconsideredBrachininaeastheout- risticsearcheswith1,000randomsequenceaddi- group, following Ober (2002) and Ribera et al. tionreplicates.Inallsearchesgapswerecodedas (2005).Sequenceswerecompiledforallspecies amissingcharacterstate.Toincreaseresolution, of Harpalinae and Brachininae for which the characters were re-weighted according to the three studied fragments were available (25 spe- rescaled consistency index (Farris 1969), and cies),plusoneexampleofeachoftheHarpalinae new heuristic searches conducted starting with tribesforwhichno18SrRNAwasavailable(ten thetreesobtainedwithequallyweightedcharac- additionalspecies;Table1).Sequenceswereob- ters. Node support was measured with non- tainedfromMaddisonetal.(1998)(GenBankac- parametricbootstrappingwith1,000pseudo-rep- cession numbers AF002772–AF002783), Mad- licatesof100randomsequenceadditionseach. dison et al. (1999) (7 sequences among Previous analyses including the sequences AF012471–AF012480) and Ober (2002) (5 se- used in this study (Maddison et al. 1998, 1999, quences among AF398715–AF398721) (Table Ober2002,Riberaetal.2005)showedthelikely 1).Winglessand28SrRNAsequenceswereob- presenceofartefactsduetothedistortingeffects tained fromOber (2002) (35 sequences of each of long branches (Felsenstein 1978). Therefore, among AF398569–AF398636 and AF398638– we conducted additional analyses using model- AF398564, respectively) (Table 1). The 18S based phylogenetic methods, which should in rRNA sequence of Desera australis Peringuey principlebelesssensitivethanparsimonytothe (Harpalinae, Dryptini) was obtained from D. biases introduced by highly saturated or homo- Maddison(personalcommunication;June2005). plasiousdata(e.g.Swoffordetal.1996,Felsen- Preliminarysearcheswereconductedwiththe stein2004). 28SrRNAandwinglessgenesalonetotestforthe Theoptimalmodelofnucleotidesubstitution possibilitythatIldobatescouldberelatedtoany was determined with Modeltest 3.7 (Posada & ofthetribeswithmissing18SrRNAsequences. Crandall1998),forthethreegenesseparately.In As this was not the case, a reduced dataset was all cases a generalised time reversible (GTR) 210 Riberaetal. (cid:127) ENTOMOL.FENNICAVol.17 Fig.1.Phylogramofthe singlemostparsimoni- oustreeresultingfrom theheuristicsearchon there-weightedcom- bineddataset.Num- bersabovebranches, bootstrapsupportval- uesontheequally weighteddataset;be- lowbranches,bootstrap supportvaluesonthe re-weighteddataset;in- sidenodes,posterior Bayesianprobabilities ofthesearchin MrBayes(×100)(see Methodsfordetails). model (Tavaré 1986) with gamma distributed searcheswereconductedusingthedefaultpriors amongsiteratevariationandestimatingthepro- (uniform probabilities) starting with random portion of invariable sites (Yang 1993) was se- trees, with three heated and one cold Markov lected as the best fit to the data. To analyse the chainsfor2,000,000generations,sampledatin- dataweusedBayesianprobabilities(Rannala& tervalsof100generations.Todeterminethepoint Yang1996)asimplementedinthecomputerpro- atwhichtheMarkovchainsreachedstationarity, gram MrBayes 3.1 (Huelsenbeck & Ronquist the log-likelihood scores were plotted against 2001, Ronquist & Huelsenbeck 2003), as it al- generation time, and visually determined when lows the estimation of different evolutionary thelog-likelihoodvaluesreachedastableequilib- models for the user-defined data partitions. The rium. Theparameter estimations (including tree parameters of the three partitions (i.e., genes) topologies) obtained before reaching the wereestimatedindependently.Twoindependent stationarityarediscardedasa“burnin”,andonly ENTOMOL.FENNICAVol.17 (cid:127) PhylogeneticpositionofIldobatesneboti 211 thetreessampledafterthatpointareconsidered (Huelsenbeck&Ronquist2001). Posterior probabilities were used to assess node stability. Although generally higher than bootstrap support values, posterior probabilities abovethestandard95%thresholdcanbetakenas indicativeofstrongnodestability(Suzukietal. 2002, Alfaro et al. 2003, Douady et al. 2003, Simmons et al. 2004, Huelsenbeck & Rannala 2004). 3.Results The matrix with the 36 species with 28S rRNA andwinglesssequences(Table1)had1,187char- acters,ofwhich359wereparsimonyinformative. A heuristic search in PAUP resulted in two equally shortest trees of 2,669 steps, in which Ildobates was included in a clade with Desera, ThalpiusandCatapiesiswith69%bootstrapsup- port,noneofthemwith18SrRNAmissing(Table 1). The more inclusive clades containing Fig.2.Un-rootedtreeoftheexhaustivesearchonthe Ildobates had bootstrap support values lower combineddataset(wingless,18SrRNA,28SrRNA)of thefourspeciesof“Dryptitae”,includinghyper-vari- than50%. ableregionsoftheribosomalgenes. Astherewasnoevidenceofacloserelation- shipofIldobateswithany ofthespecieswitha missing18SrRNAsequence(Table1),anewma- ofIldobatesandThalpius(Fig.1). trixwasbuildwiththe26specieswithfulldata, The data matrix of the full sequences of the with 2,959 characters of which 422 were parsi- four species of “Dryptitae” (Galerita, Desera, mony informative. The heuristic parsimony ThalpiusandIldobates)had3,846characters,of searchresultedin11shortesttreesof2,385steps which 114 were parsimony informative. In the (CI: 0.382, RI: 0.312), with “Dryptitae” mono- shortestofthethreepossibleunrootedtrees,with phyletic (with only 56% bootstrap support) and 772 steps, the closest relative of Ildobates was Galerita sister to the rest, which formed a Thalpius, with exclusion of Galerita + Desera polytomy (not shown). After re-weighting the (i.e., a monophyletic Zuphiini). The same rela- characters,theheuristicsearchonthe11original tionship was found with a Bayesian probability treesresultedinasingletree,inwhichThalpius search,withaposteriorprobabilityof1.0(Fig.2). was sister to Ildobates (i.e., a monophyletic Zuphiini),alsowithverylowsupport(bootstrap 54%, Fig. 1). The bootstrap support for “Dryp- 4.Discussion titae”usingre-weightedcharacterswasveryhigh (100%,Fig.1).ThetreeobtainedwithBayesian Despite the limited taxon sampling (with only posteriorprobabilitieshadalargepolytomyatthe one example of each of the potentially relevant baseofHarpalinae,althoughthenodesthatwere groups), all our analyses recovered the mono- resolved were identical to those of the re- phylyoftribesZuphiini,GaleritiniandDryptini weightedparsimonytree(Fig.1).Thenodesde- inwhatcouldbecalledthesupertribe“Dryptitae” finingtherelationshipofIldobateshadingeneral [i.e., the subfamily Dryptinae of e.g. Serrano highersupport,withaposteriorprobabilityof1.0 (2003)].Thiswasoneofthefewnodeswithhigh for“Dryptitae”and0.94forthesisterrelationship support among the Harpalinae, both with parsi- 212 Riberaetal. (cid:127) ENTOMOL.FENNICAVol.17 mony and Bayesian posterior probabilities. The Casale, A., Vigna-Taglianti, A. & Juberthie, CH. 1998: resolutionwithin“Dryptitae”ishoweverlow,al- ColeopteraCarabidae.–In:Juberthie,C.&Decu,V. (eds.), Encyclopaedia Biospéologica 2: 1047–1081. thoughallanalysespointtoasisterrelationshipof SociétedeBiospéologie,Moulis-Bucarest. the only included Zuphiini (i.e. Thalpius) and Douady,C.J.,Delsuc,F.,Boucher,Y.,Doolittle,W.F.& Ildobates, confirmingtheinclusionofIldobates Douzery, J. P. 2003: Comparison of Bayesian and among the Zuphiini, as considered in Ortuño et maximumlikelihoodbootstrapmeasuresofphylogen- al.(2004)basedonamorphologicalanalysis,and eticreliability.—MolecularBiologyandEvolution 20:248–254. inagreementwiththetraditionaltaxonomicclas- Español, F. 1966: Interesantes descubrimientos bio- sification (e.g., Löbl & Smetana 2003, Serrano espeleológicosenlaprovinciadeCastellón.—Publ. 2003). Inst.Biol.Aplic.Barcelona40:67–79.[InSpanish.] Zuphiiniisatribewithanalmostcosmopoli- Farris,J.S.1969:Asuccessiveapproximationsapproach tandistribution,withnumerousspeciesoccupy- to character weighting. — Systematic Zoology 18: 374–385. ingthesubterraneanmedium(bothendogeanand Felsenstein,J.1978:Casesinwhichparsimonyorcompat- troglobitic)(Moore1995,Casaleetal.1998).Itis ibilitymethodswillbepositivelymisleading.—Sys- remarkablethatsomeofthesetroglobiticspecies tematicZoology27:401–410. in very distant areas have a strikingly similar Felsenstein, J. 2004: Inferring phylogenies. — Sinauer, overallappearance,suchase.g.Speozuphiumand Sunderland.664pp. Huelsenbeck,J.P.&Rannala,B.2004:Frequentistproper- SpeothalpiusinAustralia(Moore1995,Casaleet tiesofBayesianposteriorprobabilitiesofphylogen- al.1998).Ourresultsdemonstratetheinclusion etictreesundersimpleandcomplexsubstitutionmod- ofIldobatesamongZuphiini,butaresilentabout els.—SystematicBiology53:904–913. any further detail on relationships within the Huelsenbeck,J.P.&Ronquist,F.2001:MrBAYES:Bay- tribe. It would be most interesting to know if esian inference of phylogenetic trees. — Bio- informatics17:754–755. Ildobates is most closely related to similar Löbl,I.&Smetana,A.(eds.)2003:CatalogueofPalaearc- troglobiticformsindistantgeographicalareas– tic Coleoptera. 1: Archostemata–Myxophaga–Ade- in which case it could be appropriately called a phaga.—ApolloBooks,Stenstrup,Denmark.819pp. “relict” species, as it is usually considered Maddison,D.R.,Baker,M.D.&Ober,K.A.1998:Apre- (Casaleetal.1998,Ortuñoetal.2004).Alterna- liminaryphylogeneticanalysisof18SribosomalDNA ofcarabidbeetles(Insecta:Coleoptera).—In:Ball,G. tively,itcouldbemostcloselyrelatedwithsome E.,Casale,A.&Vigna-Taglianti,A.(eds.),Phylogeny oftheEuropeanspecies,inwhichcasethesimi- and classification of Caraboidea (Coleoptera: Ade- laritiesinexternalmorphologywithdistantcave phaga):229–250.MuseoRegionalediScienzeNatu- specieswouldbeaninterestingcaseofparallelor rali,Torino.543pp. convergentevolution. Maddison,D.R.,Baker,M.D.&Ober,K.A.1999:Phy- logenyofcarabidbeetlesasinferredfrom18Sribo- somalDNA(Coleoptera:Carabidae).—Systematic Acknowledgements. We greatly thank David Maddison Entomology24:103–138. (Arizona)fortheunpublishedsequenceofDeseraaustra- Maddison,W.P.&Maddison,D.R.2000:MacClade,ver- lis,andA.Izquierdo(MNCN,Madrid)andM.D.Piulach sion4.0.—Sinauer,Sunderland,Massachussets. (CID,Barcelona)forhelpinthesequencingwork.Wealso Moore,P.1995:Tworemarkablenewgeneraandspecies thankAlbertoSendra(Valencia)andVicenteOrtuño(Ma- oftroglobiticCarabidae(Coleoptera)fromNullarbor drid)fortheirhelpinobtainingthespecimensforstudy. Caves.—JournalofAustralianEntomologicalSoci- ety34:159–161. Ober, K. A. 2002: Phylogenetic relationships of the References carabidsubfamilyHarpalinae(Coleoptera)basedon molecularsequencedata.—MolecularPhylogenetics andEvolution24:228–248. Alfaro, M. E., Zoller, S. & Lutzoni, F. 2003: Bayes or Ortuño, V. M., Sendra, A., Montagud, S. & Teruel, S. Bootstrap?Asimulationstudycomparingtheperfor- 2004:Systématique etbiologie d’une espèce paléo- manceofbayesianMarkovchainMonteCarlosam- endémique hypogée de la péninsule Ibérique: Ildo- pling and bootstrapping in assessing phylogenetic bates neboti Español 1966 (Coleoptera: Carabidae: confidence.—MolecularBiologyandEvolution20: Dryptinae).—Ann.Soc.Entomol.Fr.(n.s.)40:459– 255–266. 475.[InFrench.] Bellés, X. 1987: Fauna cavernícola i intersticial de la Posada,D.&Crandall,K.A.1998:Modeltest:testingthe Península Ibèrica i les Illes Balears. — Ed. Moll, model of DNA substitution. — Bioinformatics 14: Mallorca.207pp.[InCatalan.] 817–818. ENTOMOL.FENNICAVol.17 (cid:127) PhylogeneticpositionofIldobatesneboti 213 Rannala,B.&Yang,Z.1996:Probabilitydistributionof meaningfulareBayesiansupportvalues?—Molecu- molecularevolutionarytrees:Anewmethodofphylo- larBiologyandEvolution21:188–199. geneticinference.—JournalofMolecularEvolution Suzuki,Y.,Glazko,G.V.&Nei,M.2002:Overcredibility 43,304–311. of molecular phylogenies obtained by Bayesian Ribera,I.,Mateu,J.&Bellés,X.2005:Phylogeneticrela- phylogenetics.—ProceedingsoftheNaturalAcad- tionshipsofDalyatmirabilisMateu,2002,withare- emyofScience,U.S.A.99:16138–16143. visedmolecularphylogenyofgroundbeetles(Coleop- Swofford,D.L.,Olsen,G.J.,Waddell,P.J.&Hillis,D.M. tera,Carabidae).—JournalofZoologicalSystematics 1996: Phylogenetic inference. — In: Hillis, D. M., andEvolutionaryResearch43:284–296. Moritz,C.&Mable,B.K.(eds.),MolecularSystemat- Ronquist, F., & Huelsenbeck, J. P. 2003: MrBayes 3: ics. 2nd edition: 407–514. Sinauer & Associates, Bayesianphylogeneticinferenceundermixedmodels. Sunderland,Massachusetts. —Bioinformatics19:1572–1574. Swofford,D.L.2002:PAUP*.PhylogeneticAnalysisus- Serrano,J.2003:CatálogodelosCarabidae(Coleoptera) ingParsimony(*andothermethods),Version4.0b10. delaPenínsulaIbérica.MonografíasS.E.A.,Vol.9.— —Sinauer&Associates,Sunderland,Massachusetts. Sociedad Entomológica Aragonesa, Zaragoza. 130 Tavaré,S.1986:Someprobabilisticandstatisticalprob- pp.[InSpanish.] lemsontheanalisisofDNAsequences.—In:Miura, Shull,V.L.,Vogler,A.P.,Baker,M.D.,Maddison,D.R.& R.M.(ed.),Somemathematicalquestionsinbiology– Hammond,P.M.2001:Sequencealignmentof18Sri- DNAsequenceanalysis:57–86.AmericanMathSoci- bosomal RNA and the basal relationships of Ade- ety,Providence,RodeIsland. phagan beetles:Evidence formonophyly ofaquatic Yang,Z.1993:Maximumlikelihoodestimationofphylog- familiesandtheplacementofTrachypachidae.—Sy- enyfromDNAsequenceswhensubstitutionratesdif- st.Biol.50:945–969. fer over sites: Approximate methods. — Molecular Simmons,M.P.,Pickett,K.M.&Miya,M.2004:How BiologyandEvolution10:1396–1401.