ebook img

Molecular Biology of Drug Addiction PDF

358 Pages·2007·5.15 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Molecular Biology of Drug Addiction

Molecular Biology of Drug Addiction Edited by Rafael Maldonado Humana Press Molecular Biology of Drug Addiction Molecular Biology of Drug Addiction Edited by Rafael Maldonado Laboratory of Neuropharmacology Health and Life Sciences School Universitat Pompeu Fabra Barcelona, Spain Humana Press Totowa, New Jersey © 2003 Humana Press Inc. 999 Riverview Drive, Suite 208 Totowa, New Jersey 07512 www.humanapress.com All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise without written permission from the Publisher. The content and opinions expressed in this book are the sole work of the authors and editors, who have warranted due diligence in the creation and issuance of their work. The publisher, editors, and authors are not responsible for errors or omissions or for any consequences arising from the information or opinions presented in this book and make no warranty, express or implied, with respect to its contents. Due diligence has been taken by the publishers, editors, and authors of this book to assure the accuracy of the information published and to describe generally accepted practices. The contributors herein have carefully checked to ensure that the drug selections and dosages set forth in this text are accurate and in accord with the standards accepted at the time of publication. Notwithstanding, since new research, changes in government regulations, and knowledge from clinical experience relating to drug therapy and drug reactions constantly occur, the reader is advised to check the product information provided by the manufacturer of each drug for any change in dosages or for additional warnings and contraindications. This is of utmost importance when the recommended drug herein is a new or infrequently used drug. It is the responsibility of the treating physician to determine dosages and treatment strategies for individual patients. Further, it is the responsibility of the health care provider to ascertain the Food and Drug Administration status of each drug or device used in their clinical practice. The publishers, editors, and authors are not responsible for errors or omissions or for any consequences from the application of the information presented in this book and make no warranty, express or implied, with respect to the contents in this publication. This publication is printed on acid-free paper. ∞ ANSI Z39.48-1984 (American National Standards Institute) Permanence of Paper for Printed Library Materials. Cover design by Patricia F. Cleary. Cover illustration: Disruption of the CREB gene in brain by Cre/loxP-mediated recombination (Chapter 2, Fig. 5). See complete illustration on p. 33 and discussion on p. 30. For additional copies, pricing for bulk purchases, and/or information about other Humana titles, contact Humana at the above address or at any of the following numbers: Tel: 973-256-1699; Fax: 973-256-8341; E-mail: [email protected] or visit our website at http://humanapress.com Photocopy Authorization Policy: Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by Humana Press Inc., provided that the base fee of US $10.00 per copy, plus US $00.25 per page, is paid directly to the Copyright Clearance Center at 222 Rosewood Drive, Danvers, MA 01923. For those organizations that have been granted a photocopy license from the CCC, a separate system of payment has been arranged and is acceptable to Humana Press Inc. The fee code for users of the Transactional Reporting Service is: [1-58829-060-3/03 $10.00 + $00.25]. Printed in the United States of America. 10 9 8 7 6 5 4 3 2 1 Library of Congress Cataloging-in-Publication Data Molecular biology of drug addiction / edited by Rafael Maldonado p. cm. Includes bibliographical references and index. ISBN 1-58829-060-3 (alk. paper) 1. Drug abuse--Molecular aspects. I. Maldonado, Rafael. RC564 .M638 2003 616.86--dc21 2002024057 Preface The neurobiological mechanisms involved in drug addiction have been investigated for several decades with a variety of pharmacological and biochemical approaches. These studies have associated several neuroanatomical and neurochemical mechanisms with different components of drug-addictive processes, and this has led to the identification of possible targets for new treatment strategies. Progress has been accelerated dramatically in the last few years by novel research tools that selectively remove or enhance the expression of specific genes encoding proteins responsible for the biological responses of these drugs. These new models, most of them obtained from the recent advances in molecular biology’s technology, have provided definitive advances in our understanding of the neurobiological mechanisms of drug addiction. Classical behavioral, biochemical, and anatomical techniques have been adapted to take a maximum advantage of these new molecular tools. These recent studies have clarified the different molecular and intracellular mechanisms involved in addictive processes, as well as the interactions among these endogenous neurobiological mechanisms; and they have provided new insights toward identifying other genetic bases of drug addiction. The main purpose of Molecular Biology of Drug Addiction is to offer an extensive survey of the recent advances in molecular biology and complementary techniques used in the study of the neurobiological basis of drug dependence and addiction. Ours is a multidisciplinary review of the most relevant molecular, genetic, and behavioral approaches used in this field. The definitive advances given by the new molecular and behavioral tools now available provide a unique opportunity for such an approach. Each chapter in this book is not simply a review of the research activities of the author’s laboratory, but rather provides a critical review of the main advances in the corresponding topic. Sixteen different chapters organized in four parts have been included in the book. The first part is devoted to the advances in the knowledge of the neurobiological mechanisms of opioid addiction provided in the last few years using the new available techniques, and some of the new therapeutic perspectives now opening up in this field. The second part addresses the most recent findings on the molecular, genetic, and neurochemical mechanisms involved in psychostimulant addiction, which have changed some of the basic knowledge of the neurobiological substrate of these processes. The third part of the book is focused on cannabinoid addiction. New molecular tools have also been used recently to elucidate the biological substrate of cannabinoid dependence. The behavioral models now available, which allow evaluation of the different components of cannabinoid dependence, have v vi Preface optimized results in this particular field. The last part addresses several molecular, genetic, and behavioral aspects of alcohol and nicotine addiction, which have provided decisive progress in our understanding of these addictive processes. Molecular Biology of Drug Addiction addresses the main advances in understanding the molecular mechanisms involved in the complex physiological and behavioral processes underlying drug addiction and will, we hope, serve as a useful reference guide for a wide range of neuroscientists. This book also provides basic information of interest for scientists and clinicians interested in the new therapeutic approaches to drug addiction. The different sections of the book are presented by the most relevant scientific personalities for each area. I deeply thank the authors for their effort and expert contribution in the different chapters, and Elyse O’Grady at Humana Press for offering this rewarding opportunity. Finally, I thank Raquel Martín especially for help in manuscript preparation and administrative assistance and Dr. Patricia Robledo and Dr. Olga Valverde for scientific assistance and help in library research. Rafael Maldonado Contents Preface............................................................................................................................v Contributors ..................................................................................................................ix PART I. OPIOID ADDICTION 1 Molecular Mechanisms of Opioid Dependence by Using Knockout Mice Brigitte L. Kieffer and Frédéric Simonin............................................................3 2 Molecular Genetic Approaches Theo Mantamadiotis, Günther Schütz, and Rafael Maldonado .....................27 3 Opiate Addiction: Role of the cAMP Pathway and CREB Lisa M. Monteggia and Eric J. Nestler.............................................................37 4 Different Intracellular Signaling Systems Involved in Opioid Tolerance/Dependence Thomas Koch, Stefan Schulz, and Volker Höllt...............................................45 5 Inhibitors of Enkephalin Catabolism: New Therapeutic Tool in Opioid Dependence Florence Noble and Bernard P. Roques ...........................................................61 PART II. PSYCHOSTIMULANT ADDICTION 6 Recent Advances in the Molecular Mechanisms of Psychostimulant Abuse Using Knockout Mice Cécile Spielewoy and Bruno Giros ....................................................................79 7 Opioid Modulation of Psychomotor Stimulant Effects Toni S. Shippenberg and Vladimir I. Chefer..................................................107 8 Influence of Environmental and Hormonal Factors in Sensitivity to Psychostimulants Michela Marinelli and Pier Vincenzo Piazza.................................................133 vii viii Contents 9 Development and Expression of Behavioral Sensitization: Temporal Profile of Changes in Gene Expression Peter W. Kalivas ................................................................................................161 PART III. CANNABINOID ADDICTION 10 New Advances in the Identification and Physiological Roles of the Components of the Endogenous Cannabinoid System Ester Fride and Raphael Mechoulam .............................................................173 11 Integration of Molecular and Behavioral Approaches to Evaluate Cannabinoid Dependence Dana E. Selley, Aron H. Lichtman, and Billy R. Martin...............................199 12 Opioid System Involvement in Cannabinoid Tolerance and Dependence Rafael Maldonado.............................................................................................221 PART IV. ALCOHOL AND NICOTINE ADDICTION 13 Current Strategies for Identifying Genes for Alcohol Sensitivity John C. Crabbe..................................................................................................249 14 Genetic Basis of Ethanol Reward Christopher L. Cunningham and Tamara J. Phillips....................................263 15 Behavioral and Molecular Aspects of Alcohol Craving and Relapse Rainer Spanagel................................................................................................295 16 Molecular and Behavioral Aspects of Nicotine Dependence and Reward Emilio Merlo Pich, Christian Heidbreder, Manolo Mugnaini, and Vincenzo Teneggi ..................................................................................315 Index.................................................................................................................. 339 Contributors VLADIMIR I. CHEFER • Integrative Neuroscience Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD JOHN C. CRABBE • Portland Alcohol Research Center, VA Medical Center and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR CHRISTOPHER L. CUNNINGHAM • Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR ESTER FRIDE • Department of Behavioral Sciences, College of Judea and Samaria, Ariel, Israel BRUNO GIROS • INSERM U513, Faculté de Médecine de Créteil, Créteil, France CHRISTIAN HEIDBREDER • Biology Department, GlaxoSmithKline Psychiatry CEDD Research Centre, Verona, Italy VOLKER HÖLLT • Department of Pharmacology, Otto-von-Guericke University, Magdeburg, Germany PETER W. KALIVAS • Department of Physiology, Medical University of South Carolina, Charleston, SC BRIGITTE L. KIEFFER • Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France THOMAS KOCH • Department of Pharmacology, Otto-von-Guericke University, Magdeburg, Germany ARON H. LICHTMAN • Department of Pharmacology and Toxicology, Virginia Commonwealth University Medical College of Virginia, Richmond, VA RAFAEL MALDONADO • Laboratory of Neuropharmacology, Health and Life Sciences School, Universitat Pompeu Fabra, Barcelona, Spain THEO MANTAMADIOTIS • Differentiation and Transcription Laboratory, Peter MacCallum Cancer Institute, Vic, Australia MICHELA MARINELLI • INSERM U259, Université de Bordeaux II, Bordeaux, France BILLY R. MARTIN • Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia, Richmond, VA RAPHAEL MECHOULAM • Department of Medicinal Chemistry and Natural Products, Medical Faculty, Hebrew University of Jerusalem, Jerusalem, Israel LISA M. MONTEGGIA • Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX ix

Description:
experience relating to drug therapy and drug reactions constantly occur, the The main purpose of Molecular Biology of Drug Addiction is to offer an extensive The third part of the book is focused on cannabinoid . CHRISTIAN HEIDBREDER • Biology Department, GlaxoSmithKline Psychiatry CEDD.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.