ebook img

Molecular Basis of Symbiosis PDF

316 Pages·2006·2.641 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Molecular Basis of Symbiosis

Progress in Molecular and Subcellular Biology 41 Series Editors:W.E.G. Müller (Managing Editor), Ph. Jeanteur, Y. Kuchino, A. Macieira-Coelho, R. E. Rhoads Volumes Published in the Series Progress in Molecular Subseries: and Subcellular Biology Marine Molecular Biotechnology Volume 26 Volume 37 Signaling Pathways for Translation: Sponges (Porifera) Insulin and Nutrients W.E.G. Müller (Ed.) R.E. Rhoads (Ed.) Volume 39 Volume 27 Echinodermata Signaling Pathways for Translation: V. Matranga (Ed.) Stress, Calcium, and Rapamycin R.E. Rhoads (Ed.) Volume 28 Small Stress Proteins A.-P. Arrigo and W.E.G. Müller (Eds.) Volume 29 Protein Degradation in Health and Disease M. Reboud-Ravaux (Ed.) Volume 30 Biology of Aging A. Macieira-Coelho Volume 31 Regulation of Alternative Splicing Ph. Jeanteur (Ed.) Volume 32 Guidance Cues in the Developing Brain I. Kostovic (Ed.) Volume 33 Silicon Biomineralization W.E.G. Müller (Ed.) Volume 34 Invertebrate Cytokines and the Phylogeny of Immunity A. Beschin and W.E.G. Müller (Eds.) Volume 35 RNA Trafficking and Nuclear Structure Dynamics Ph. Jeanteur (Ed.) Volume 36 Viruses and Apoptosis C. Alonso (Ed.) Volume 38 Epigenetics and Chromatin Ph. Jeanteur (Ed.) Volume 40 Developmental Biology of Neoplastic Growth A. Macieira-Coelho (Ed.) Volume 41 Molecular Basis of Symbiosis J. Overmann (Ed.) Jörg Overmann (Ed.) Molecular Basis of Symbiosis With 60 Figures, 5 in Color, and 10 Tables Professor Dr. JÖRG OVERMANN Section of Microbiology Department of Biology Maria-Ward-Str. 1a 80638 Munich Germany ISSN 0079-6484 ISBN-10 3-540-28210-6 Springer-Verlag Berlin Heidelberg New York ISBN-13 978-3-540-28210-5 Library of Congress Control Number: 2005934306 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. Springer-Verlag is a part of Springer Science + Business Media springeronline.com © Springer Berlin Heidelberg 2006 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Product liability: The publishers cannot guarantee the accuracy of any information about dosage and application contained in this book. In every individual case the user must check such information by consulting the relevant literature. Production: SPI Publishing Services, Pondicherry Typesetting: SPI Publishing Services, Pondicherry Cover design: design & production GmbH, Heidelberg, Germany Printed on add free paper 30/3150Re 5 1 3 2 1 0 Preface Symbiotic associations involving prokaryotes are known from many different phylogenetic lineages and occur ubiquitously. The significance of these asso- ciations is well established for insects, where 15–20% (i.e., up to 190,000) of the species depend on symbioses with bacteria (Buchner 1965). As another example, up to 85% of all prokaryotes in the termite hindgut occur in ecto- or endosymbiotic associations with flagellates (Berchtold et al. 1999). In some aquatic environments, essentially all cells of Green Sulfur Bacteria occur in the symbiotic state (Glaeser and Overmann 2003). Finally, whereas a total of 200 bacterial species are considered human pathogens (Lengeler et al. 1999), the number of autochthonous (commensal and symbiotic) bacterial species as- sociated just with the human intestinal tract is more than three times higher (Suau et al. 1999). Obviously, symbiosis represents a typical way of prokary- otic life. In comparison to the approximately 6,000 validly described and mostly well-studied species of prokaryotes, much less is known about symbiotic asso- ciations. This is largely due to technical limitations. Maintaining and espe- cially growing symbiotic associations in the laboratory is inherently difficult. Since the advent of the era of molecular ecology, however, 16S rRNA-based culture-independent techniques continue to reveal novel phylotypes of symbi- otic prokaryotes. A comprehensive search of the Genbank database yielded 937 entries of 16S rRNA gene sequences for symbiotic Bacteria or Archaea (Overmann and Schubert 2002). Yet, this latter number represents only a few percent of the total number of 16S rRNA gene sequences in the database and hence most likely is not representative for the entire diversity of symbiotic prokaryotes. Where estimated, the age of symbiotic associations ranges from 250 (Baumann et al. 1998) to 20 million years (Dubilier et al. 1995). During these long time periods, co-evolution of the partner organisms occurred (Bandi et al. 1996; Baumann et al. 1998; Sauer et al. 2000), leading to specific mechanisms of organismic interactions, and resulting in novel physiological capabilities of the association as compared to those of the individual partners. Well-known examples include the colonization of nutrient-poor soils by legumes associated with N -fixing rhizobia, or the colonization of Arctic and Antarctic extreme 2 habitats by lichens. Mechanisms of symbiotic interaction may have already evolved in association with former, different partner organisms, as has been proposed for opportunistic human pathogens which appear to have developed their virulence factors in interactions with non-mammalian eukaryotes (Hogan and Kolter 2002). The exchange of specific signals, the reciprocal regulation, and the physio- logical interactions developed in symbiotic associations have always attracted VI Preface the interest of researchers. In the past, the complex nature of these interactions and the lack of suitable laboratory models often impeded the understanding of these fundamental processes. However, symbiosis research has recently en- tered an exciting era because molecular biology now provides us with a wealth of suitable and sophisticated novel techniques. These tools are particularly useful for studying associations in which the partners cannot be separated from each other or cannot be grown in the laboratory. Recent advances in molecular symbiosis research permit a first comparison across different symbiotic and also pathogenic systems. Indeed, common mo- lecular principles of organismic interaction begin to emerge. With reference to the symbiotic systems covered in this book, the recent discovery of RTX toxin-like components in two very different symbiotic associations, namely phototrophic consortia (Chap. 2) and the association of Riftia pachyptila with chemoautotrophic bacteria (Cavanaugh 2004; Chap. 10) was unexpected and suggests that this module is employed in phylogenetically very distant sys- tems. Future research will reveal whether these modules evolved from the same ancestor and thus are homologous, or whether they developed independ- ently by convergent evolution. It is the goal of this book to contribute towards a broader perspective of the diversity of symbiotic systems. The identification of unifying themes among different systems will stimulate research in this fascinating topic even further. To this end, a set of 14 different model systems have been chosen. They com- prise some well-known symbioses for which a considerable amount of infor- mation has already been gathered over the past few years. Nevertheless, im- portant novel aspects of symbiotic interactions have recently emerged. Other experimental systems have only recently become amenable to experimental manipulation, but already provided exciting insights into the molecular mechanisms of symbiosis. It is the belief of the editor as well as the authors, that a better understand- ing of the molecular mechanisms of symbioses ultimately will also lead to novel strategies for the exploitation of such systems for biotechnological purposes, and potentially also help to improve strategies for the treatment of (human) pathogens. References Bandi C, Siron M, Damiani G, Magrassi L, Nalepa CA, Laudani U, Sacchi L (1996) The establishment of intracellular symbiosis in an ancestor of cockroaches and ter- mites. Proc R Soc Lond B 259:293–299 Baumann P, Baumann L, Clark MA, Thao ML (1998) Buchnera aphidicola: the endo- symbiont of aphids. ASM News 64:203–209 Berchtold M, Chatzinotas A, Schönhuber W, Brune A, Amann R, Hahn D, König H (1999) Differential enumeration and in situ localization of micro-organisms in the Preface VII hindgut of the lower termite Mastotermes darwiniensis by hybridization with rRNA-targeted probes. Arch Microbiol 172:407–416 Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Interscience, New York Cavanaugh CM (2004) Evolution of chemoautotrophic symbionts: emerging patterns and implications for cospeciation. 10th international symposium on microbial ecol- ogy, Cancun, Mexico Dubilier N, Giere O, Distel DL, Cavanaugh CM (1995) Characterization of chemo- autotrophic bacterial symbionts in a gutless marine worm (Oligochaeta, Annelida) by phylogenetic 16S rRNA sequence analysis and in situ hybridization. Appl Envi- ron Microbiol 61:2346–2350 Glaeser J, Overmann J (2003) Characterization and in situ carbon metabolism of pho- totrophic consortia. Appl Environ Microbiol 69:3739–3750 Hogan D, Kolter R (2002) Pseudomonas-Candida interactions: an ecological role for virulence factors. Science 296:2229–2232 Lengeler JW, Drews G, Schlegel HG (1999) Biology of the prokaryotes. Thieme, Stuttgart, 955 pp Overmann J, Schubert K (2002) Phototrophic consortia: model systems for symbiotic interrelations between prokaryotes. Arch Microbiol 177:201–208 Sauer C, Stackebrandt E, Gadau J, Hölldobler B, Gross R (2000) Systematic relation- ships and cospeciation of bacterial endosymbionts and their carpenter ant host spe- cies: proposal of the new taxon Candidatus Blochmannia gen. nov. Int J Syst Evol Microbiol 50:1877–1886 Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, Dore J (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807 Contents Syntrophic Associations in Methanogenic Degradation …………………1 B. Schink 1 Introduction...................................................................................................1 2 Types of Cooperation among Anaerobic Microorganisms...........................2 3 Energetical Aspects.......................................................................................5 4 Concept of Syntrophic Energy Metabolism..................................................6 5 Energy Metabolism in Syntrophically Fermenting Bacteria.........................7 5.1 Butyrate Oxidation...............................................................................7 5.2 Syntrophic Propionate Oxidation.........................................................8 5.3 Syntrophic Ethanol Oxidation..............................................................9 5.4 Fermentation of Acetone......................................................................9 5.5 Syntrophic Oxidation of Hexoses......................................................10 5.6 Anaerobic Oxidation of Methane.......................................................11 6 Types of Interspecies Metabolite Transfer..................................................13 7 Outlook.......................................................................................................14 References.......................................................................................................15 Symbiosis between Non-Related Bacteria in Phototrophic Consortia......21 J. Overmann 1 Introduction.................................................................................................21 2 Types of Phototrophic Consortia................................................................23 3 Identification of the Bacteria which Constitute Phototrophic Consortia.....24 3.1 The Epibiont.......................................................................................24 3.2 The Central Bacterium.......................................................................27 4 Modes and Specificity of Interaction between the Bacterial Partners.........29 5 Selective Advantage of the Interaction.......................................................31 6 “Symbiosis Genes” of the Epibiont.............................................................33 7 Outlook.......................................................................................................33 References.......................................................................................................34 Prokaryotic Symbionts of Termite Gut Flagellates: Phylogenetic and Metabolic Implications of a Tripartite Symbiosis......................................39 A. Brune, U. Stingl 1 Introduction.................................................................................................39 2 The Termite Gut Microecosystem..............................................................40 2.1 Lignocellulose Degradation...............................................................40 2.2 The Gut Microenvironment...............................................................40 2.3 Prokaryotic Diversity.........................................................................41 3 Hindgut Protozoa........................................................................................42 3.1 Phylogeny..........................................................................................43 3.2 Physiology and Function....................................................................43 X Contents 4 Symbiotic Associations with Prokaryotes...................................................45 4.1 Prokaryotic Epibionts.........................................................................45 4.1.1 Methanogens.............................................................................48 4.1.2 Spirochaetes..............................................................................48 4.1.3 Bacteroidales............................................................................49 4.2 Prokaryotic Endosymbionts...............................................................50 4.2.1 Methanogens.............................................................................50 4.2.2 The ‘Endomicrobia’..................................................................50 4.2.3 Endonuclear Bacteria................................................................52 5 Functional and Metabolic Implications.......................................................52 5.1 Hydrogen Metabolism........................................................................52 5.2 Other Possible Functions...................................................................53 6 Conclusions.................................................................................................54 References.......................................................................................................55 Towards an Understanding of the Killer Trait: Caedibacter Endocytobionts in Paramecium....................................................................61 J. Kusch, H.-D. Görtz 1 Introduction.................................................................................................61 2 Evolutionary Ecology of the Caedibacter Symbiosis and R Body Production...................................................................................................63 3 Host Specificity of Caedibacter..................................................................67 4 Molecular Evolution of R body Production................................................69 5 Conclusions.................................................................................................72 References.......................................................................................................72 Bacterial Ectosymbionts which Confer Motility: Mixotricha paradoxa from the Intestine of the Australian Termite Mastotermes darwiniensis................................................................77 Helmut König, Li Li, Marika Wenzel, Jürgen Fröhlich 1 Introduction.....................................................................................................77 2 The Intestinal Microbiota of Mastotermes darwiniensis...............................78 3 Symbiotic Interactions between Spirochetes and Flagellates........................81 4 Morphology of Mixotricha paradoxa............................................................82 5 Phylogenetic Position of Mixotricha paradoxa.............................................84 6 Glycolytic Activities of Mastotermes darwiniensis and its Flagellates........84 7 Identification of the Ectosymbiotic Spirochetes of Mixotricha paradoxa....87 8 Identification of the Ectosymbiotic Rod-Shaped Bacterium of Mixotricha paradoxa...............................................................................88 9 Assignment of 16S rDNA Sequences to the Corresponding Ectosymbiotic Bacterial Morphotypes....................................................88 10 Conclusions.............................................................................................91 References.......................................................................................................91 Contents XI Extrusive Bacterial Ectosymbiosis of Ciliates.............................................97 G. Rosati 1 Introduction.................................................................................................97 2 The Ciliate Host..........................................................................................98 3 The Epixenososomal Band..........................................................................99 4 Epixenosomes...........................................................................................100 4.1 Nature and Phylogenetic affiliation.................................................100 4.2 Morphological Characteristics.........................................................102 4.3 The Dome-Shaped Zone and Inclusion Body..................................104 4.4 The Extrusive Apparatus..................................................................104 4.5 The Basket Tubules..........................................................................106 5 Can Euplotidium and Epixenosomes Survive on their Own?...................107 6 The Ejection Mechanism and its Significance..........................................108 7 Why Does Euplotidium Maintain its Epixenosomes?...............................109 8 Concluding Remarks and Future Perspectives..........................................110 References.....................................................................................................112 Hydrogenosomes and Symbiosis................................................................117 J.H.P. Hackstein, N. Yarlett 1 Introduction...............................................................................................117 2 Hydrogenosomes and Mitochondrial Remnant Organelles Evolved Repeatedly..................................................................................118 3 Hydrogenosomes: Organelles that Can Use Protons as Electron Acceptors................................................................................122 3.1 Hydrogenosomes of Trichomonas vaginalis....................................122 3.2 Hydrogenosomes of Anaerobic Ciliates: at Least One Appears to be a Mitochondrion that Produces Hydrogen...............................126 3.3 Hydrogenosomes of Anaerobic Chytrids: an Alternative Way to Adapt to Anaerobic Environments...................................................128 4 A Common Ancestor that Produced Hydrogen........................................131 5 Symbiotic Associations that Depend on Intracellularly Generated Hydrogen.................................................................................132 6 Conclusions...............................................................................................135 References.....................................................................................................135 Molecular Interactions between Rhizobium and Legumes.......................143 P. Skorpil, W.J. Broughton 1 Introduction...............................................................................................143 2 Nod-Factors...............................................................................................144 3 Nod-Factor Perception..............................................................................146 4 Surface Polysaccharides............................................................................149 5 Secreted Proteins.......................................................................................152 6 Conclusions...............................................................................................153 References.....................................................................................................154

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.