ebook img

Molecular basis and characteristics of the polyclonal antibody response to exogenous coagulation ... PDF

146 Pages·2008·4.31 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Molecular basis and characteristics of the polyclonal antibody response to exogenous coagulation ...

Molecular basis and characteristics of the polyclonal antibody response to exogenous coagulation factor VIII in patients with hemophilia A Den Naturwissenschaftlichen Fakultäten der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades vorgelegt von Christiane Mühle aus Leipzig Als Dissertation genehmigt von den Naturwissenschaftlichen Fakultäten der Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 02.07.2008 Vorsitzender der Prüfungskommission: Prof. Dr. E. Bänsch Erstberichterstatter: Prof. Dr. K. von der Mark Zweitberichterstatter: Prof. Dr. T. Winkler We are here to add what we can to life, not to get what we can from it. (William Osler) To my parents Satisfaction of one's curiosity is one of the greatest sources of happiness in life. (Linus Pauling) We often think that when we have completed our study of one we know all about two, because "two" is "one and one." We forget that we still have to make a study of "and." (Arthur Eddington) Abstract Molecular basis and characteristics of the polyclonal antibody response to exogenous coagulation factor VIII in patients with hemophilia A Hemophilia A, the most common severe coagulation disorder in males, is caused by absence or impaired activity of clotting factor VIII (FVIII) resulting from various mutations in the large X-chromosomal FVIII gene (F8). Approximately half of the severely affected hemophiliacs carry a genomic inversion originating from a hot spot intrachromosomal recombination between one intragenic and either of two extragenic intron 22 homology regions (int22h). Such inversions have been proposed to be associated with concomitant large deletions in F8 which are responsible for an increased risk of an immune response against therapeutic exogenous FVIII. Exact localization of the deletion breakpoints may facilitate molecular diagnosis, allow identification of mutational hot spots and help to establish understanding of mechanisms behind gross genomic rearrangements causing hemophilia and other diseases. To investigate the hypothesis that large deletions may originate from different mechanisms and possibly involve additional mutation events, breakpoints were characterized in a group of 32 patients with severe hemophilia A and the diagnosis of a large deletion in F8. To this end, genomic DNA was investigated by standard PCR, long-range PCR and primer walking techniques. Based on the recently published human X chromosome sequence, a new mechanism for int22h-related inversions was proposed in this study and a PCR was established to discriminate the two inversion types. The identification of novel breakpoints revealed that these patients in fact represent a heterogeneous group with a variety of mutation types: mere deletions of a distinct DNA region but also complex deletions combined with additional DNA microinsertions or with recurrent int22h-related inversions. The detection of two surplus int22h copies in a hemophiliac with combined deletion and inversion events implies for the first time the presence of a double int22h-related inversion. The identification of such complex arrangements may help to explain unusual patterns observed in Southern blots for detection of int22h-related inversions. In a patient with persistent FVIII inhibitory antibodies, molecular analysis revealed a combination of an int22h2-related inversion, a deletion and an insertion of a duplicated part of the X-chromosomal MPP1 gene. The defective X-chromosome most likely originated through a new complex recombination mechanism during single spermatogenesis facilitated by homologous SINE and LINE elements. In silico analysis of the influence of a patient’s single base pair substitution in F8 illustrated diverse consequences at the RNA and protein levels besides alterations imposed by the missense mutation effect. Development of FVIII-inactivating antibodies (inhibitors) in approximately 30 % of patients with severe hemophilia A represents a serious complication in hemophilia treatment, as it renders FVIII supplementation therapy ineffective. To understand the FVIII inactivation mechanisms and to pave the way towards modifications of recombinant clotting factors with reduced immunogenicity, the exact localization of immunodominant epitopes is required. In a group of 19 patients with hemophilia A, acquired hemophilia or von Willebrand disease, immunoprecipitation of labeled FVIII domains by FVIII-specific antibodies was used to iv determine the spectrum of antigenicity. A random peptide phage display library was then employed to identify epitopes of polyclonal FVIII antibodies isolated from patient’s plasma by affinity chromatography. Biopanning on individual samples yielded specific phage clones which were displaced from binding to antibodies by excessive FVIII. Similarity of their peptide sequence with amino acid motifs of human FVIII, their accessibility in a three- dimensional protein model and immunoprecipitation results suggested putative epitopes in the A1, A2 and C1 domains for one, in the C2 domain for a second patient and overlapping epitope sequences in the A2 domain for two further patients. Synthetic peptides corresponding to the A2, C1 and C2 domain epitopes blocked antibody binding to FVIII and partially neutralized the inhibitory activity of the respective plasma. These results provide the proof of principle that random phage-displayed peptide libraries can be used for the mapping of epitopes recognized by a polyclonal antibody preparation. In conclusion, this work provides insight into the heterogeneity of large deletion mutations in F8 and into the underlying mechanisms. The discovery of concomitant large deletions undetected by conventional PCR for int22h-related inversions highlights the need for routine screening of patients with inversions for additional mutation events associated with an increased risk of developing FVIII-inactivating antibodies. Characterization of such antibodies by epitope mapping, e.g. with phage display technology, may help to identify peptides capable of neutralizing patient’s FVIII-inhibitory antibodies and contributes to a better understanding of pathogenic mechanisms. Keywords: Hemophilia A, F8 mutation analysis, large deletion breakpoints, intron 22 inversion, FVIII-specific antibodies, inhibitors, phage display, immunoprecipitation v Zusammenfassung Molekulare Ursachen und Charakterisierung polyklonaler Antikörper gegen den Blutgerinnungsfaktor VIII von Patienten mit Hämophilie A Hämophilie A ist die häufigste schwere Blutgerinnungsstörung bei Männern. Sie wird durch Fehlen oder eine verringerte Aktivität des Gerinnungsfaktors VIII (FVIII) aufgrund verschiedener Mutationen im X-chromosomalen FVIII-Gen (F8) verursacht. Bei etwa der Hälfte der Patienten beruht die schwere Hämophilie auf einer genomischen Inversion durch intrachromosomale Rekombination zwischen einer innerhalb des Gens liegenden Intron 22- Homologieregion (int22h) mit einer der beiden außerhalb des Gens liegenden Kopien. Schon länger wird vermutet, dass solche Inversionen gemeinsam mit großen Deletionen auftreten können, die für ein erhöhtes Risiko einer Immunantwort gegen therapeutischen exogenen Faktor VIII verantwortlich sind. Eine genaue Lokalisierung von Deletionsbruchpunkten kann die molekulare Diagnostik erleichtern, sowie zur Identifizierung von Mutations-Hotspots und zum besseren Verständnis der Mechanismen großer genomischer Umstrukturierungen bei Hämophilie und anderen Erkrankungen beitragen. Zur Untersuchung der Hypothese, dass große Deletionen durch verschiedene Mechanismen möglicherweise mit zusätzlichen Mutationsereignissen entstehen können, wurden die Bruchpunkte in einer Gruppe von 32 Patienten mit schwerer Hämophilie A und der Diagnose einer großen Deletion im F8 Gen charakterisiert. Dazu wurde genomische DNA mittels Standard-PCR, Long-range-PCR und Primer Walking-Techniken untersucht. Basierend auf der kürzlich veröffentlichten Sequenz des humanen X-Chromosoms wurde hier ein neuer Mechanismus der int22h-abhängigen Inversion vorgeschlagen und eine PCR zur Unterscheidung der zwei Inversionstypen etabliert. Die Identifizierung neuer Bruchpunkte offenbarte, dass es sich bei diesen Patienten um eine heterogene Gruppe mit verschiedenen Mutationstypen handelt: reine Deletionen bestimmter DNA-Bereiche, aber auch komplexe Deletionen, die mit zusätzlichen DNA-Mikroinsertionen oder mit den wiederkehrenden int22h-abhängigen Inversionen kombiniert sind. Der Nachweis zweier zusätzlicher int22h- Kopien bei einem Hämophilen mit kombinierter Deletions-Inversions-Mutation weist erstmals auf eine doppelte int22h-abhängige Inversion hin. Das Erkennen solcher komplizierter Anordnungen kann bei der Erklärung ungewöhnlicher Bandenmuster im Southern Blot zur Untersuchung auf Inversionen helfen. Bei einem Patienten mit persistierenden FVIII-inaktivierenden Antikörpern wurde eine Kombination aus einer int22h2-abhängigen Inversion, einer Deletion und einer Insertion eines verdoppelten Bereichs des X-chromosomalen MPP1-Gens nachgewiesen. Das defekte X- Chromosom entstand wahrscheinlich während einer einzigen Spermatogenese durch einen neuen komplexen Rekombinationsmechanismus, der durch homologe SINE- und LINE- Elemente ermöglicht wurde. Die In-silico-Analyse des Einflusses eines Einzelbasenaustausches im Gen F8 eines Patienten veranschaulicht neben den Auswirkungen einer Missense-Mutation die verschiedenartigen Konsequenzen auf RNA- und Proteinebene. Die Bildung von FVIII-inaktivierenden Antikörpern (Inhibitoren) bei ca. 30 % der Patienten mit schwerer Hämophilie A stellt eine ernsthafte Komplikation in der Hämophiliebehandlung dar, weil sie die Wirkung der FVIII-Supplementation drastisch vermindert. Um die vi Inaktivierungsmechanismen besser zu verstehen und den Weg für die Entwicklung veränderter rekombinanter Gerinnungsfaktoren mit geringerer Immunogenität zu bereiten, ist die genaue Bestimmung immundominanter Epitope notwendig. Immunpräzipitation markierter FVIII-Domänen durch FVIII-spezifische Antikörper von 19 Patienten mit Hämophilie A, erworbener Hämophilie oder von Willebrand Syndrom erlaubte die Bestimmung des Antigenitätsspektrums. Eine Bakteriophagenbank mit Zufallspeptiden wurde benutzt, um die Epitope polyklonaler FVIII-Antikörper zu identifizieren, welche aus Patientenplasma mittels Affinitätschromatographie isoliert wurden. Phagenselektion auf den einzelnen Patientenproben führte zur Anreicherung spezifischer Phagen, die durch überschüssigen FVIII von der Bindung an den Antikörper verdrängt wurden. Der Vergleich der phagenspezifischen Peptidsequenz mit der Aminosäuresequenz von FVIII, deren Zugänglichkeit im dreidimensionalen FVIII-Modell sowie Immunpräzipitationsdaten wiesen bei einem Patienten auf mögliche Epitope in der A1-, A2- und C1-Domäne, bei einem zweiten auf ein Epitop in der C2-Domäne und bei zwei weiteren Hämophilen auf überlappende Epitopsequenzen in der A2-Domäne hin. Synthetische Peptide, die den Epitopen in der A2-, C1- und C2-Domäne entsprechen, blockierten die Bindung der Antikörper an FVIII und konnten die inhibitorische Aktivität des zugehörigen Plasmas zum Teil neutralisieren. Diese Ergebnisse zeigen, dass Zufallspeptid-Phagenbanken prinzipiell zur Identifikation von Epitopen für polyklonale Antikörperproben geeignet sind. Die vorliegende Arbeit gewährt einen Einblick in die Heterogenität großer Deletionen im Gen F8 sowie in die zugrunde liegenden Mechanismen. Die Entdeckung, dass Inversionen mit großen Deletionen einhergehen können, welche mittels konventioneller PCR für die int22h- abhängigen Inversionen nicht detektierbar sind, unterstreicht die Notwendigkeit der Routineuntersuchung von Patienten mit Inversionen auf zusätzliche Mutationen mit einem erhöhten Risiko für die Entwicklung FVIII-inaktivierender Antikörper. Die Charakterisierung solcher Antikörper, z.B. mittels der Phage-Display-Technologie, kann bei der Identifizierung von Peptiden helfen, die FVIII-inhibierende Antikörper von Patienten neutralisieren, und trägt sicherlich zu einem besseren Verständnis der pathogenen Mechanismen bei. Schlagwörter: Hämophilie A, F8 Mutationsanalyse, Bruchpunkte großer Deletionen, Intron-22-Inversion, FVIII-spezifische Antikörper, Inhibitoren, Phage Display, Immunpräzipitation vii Table of contents Abstract ....................................................................................................................................iv Zusammenfassung...................................................................................................................vi Abbreviations...........................................................................................................................xi 1. Introduction...............................................................................................................1 1.1 Blood coagulation.......................................................................................................1 1.2 Bleeding disorders – hemophilia A.............................................................................4 1.3 Genomic organization of F8 and molecular basis of hemophilia A...........................6 1.4 Structure and interaction sites of the coagulation factor VIII.....................................9 1.5 FVIII-inhibitory antibodies in hemophiliacs.............................................................13 1.6 Objectives and experimental strategy.......................................................................17 2. Results......................................................................................................................19 2.1 Mutation mechanisms in patients with hemophilia A..........................................19 2.1.1 Elucidation of a complex rearrangement with deletion, insertion and inversion events in F8............................................................................................19 2.1.1.1 Analysis of F8 cDNA revealing absence of expression...................................19 2.1.1.2 Gross localization of deletion breakpoints.......................................................20 2.1.1.3 Identification of an additional insertion...........................................................21 2.1.1.4 Determination of a breakpoint within the int22h1 region................................25 2.1.1.5 Cytogenetic analysis suggesting gross chromosomal integrity........................27 2.1.1.6 Identification of a concomitant int22h-related inversion.................................29 2.1.1.7 Determination of the paternal origin of the defective X chromosome.............31 2.1.2 Slipped strand mispairing leading to large deletions in F8 and concomitant deletions/insertions.................................................................................................34 2.1.3 Previously undetected large deletions in F8 combined with recurrent int22h- related inversions....................................................................................................36 2.1.4 Evaluation of the effect of substitution mutations in silico....................................38 2.1.5 Overview of analyzed mutations and mechanisms................................................43 2.2 Characterization of FVIII antibody epitopes in hemophilia A patients............44 2.2.1 Characterization of patients’ material....................................................................44 2.2.2 Determination of the antigenicity profile of FVIII domains..................................45 2.2.2.1 Production of recombinant FVIII fragments....................................................45 2.2.2.2 Immunoprecipitation of labeled FVIII domains with patients’ antibodies......46 2.2.3 Epitope mapping by phage display technology......................................................50 2.2.3.1 Phage display strategy............................................................................................50 2.2.3.2 Establishment and optimization of the phage display method.........................52 2.2.3.3 Isolation of FVIII-specific antibodies from plasma of hemophiliacs..............53 2.2.3.4 Selection of phage-displayed peptides binding to patients’ FVIII-specific antibodies.........................................................................................................54 viii 2.2.3.5 Identification of overlapping peptide sequences for different patients’ samples.............................................................................................................57 2.2.4 Localization of putative epitopes in a three-dimensional FVIII model.................58 2.2.5 Functional tests for putative epitopes.....................................................................60 2.2.5.1 Synthetic peptides displacing patient’s antibodies from FVIII in competitive ELISA...........................................................................................60 2.2.5.2 Synthetic peptides partially neutralizing FVIII-inhibitory antibodies in Bethesda Assay................................................................................................61 2.2.6 Summary of antigenic domains and identified epitopes........................................63 3. Discussion.................................................................................................................64 3.1 Heterogeneity of large deletion mutations in F8: combination with insertions and inversions............................................................................................................64 3.2 New inversion polymorphism underlying the recurrent int22h-related inversion....................................................................................................................67 3.3 New mechanism of a pathogenic X-chromosomal rearrangement...........................70 3.4 Influence of genetic and exogenous factors on the immune response of hemophiliacs to FVIII...............................................................................................72 3.5 Broad spectrum of FVIII domain antigenicity and diverse role of specific identified epitopes.....................................................................................................75 3.6 Evaluation of methods for the identification of epitopes..........................................81 3.7 Novel therapeutic including epitope-based approaches to FVIII inactivating antibodies in hemophilia...........................................................................................83 3.8 Conclusion and Outlook............................................................................................89 4. Materials and Methods...........................................................................................90 4.1 General materials.......................................................................................................90 4.2 Biological samples....................................................................................................90 4.3 Equipment.................................................................................................................90 4.4 Databases and Programs............................................................................................91 4.5 General procedures....................................................................................................91 4.5.1 Agarose gel electrophoresis...................................................................................91 4.5.2 Transformation of bacteria.....................................................................................91 4.5.3 Isolation and purification of bacterial plasmid DNA.............................................92 4.5.4 Cloning of PCR products.......................................................................................93 4.5.5 Sequencing.............................................................................................................93 4.5.6 SDS-PAGE.............................................................................................................93 4.5.7 Western blot...........................................................................................................94 4.6 Mutation analysis......................................................................................................94 4.6.1 Isolation of total RNA and genomic DNA from blood..........................................94 4.6.2 RNA analysis..........................................................................................................95 4.6.2.1 cDNA synthesis................................................................................................95 4.6.2.2 RT-PCR............................................................................................................96 4.6.3 DNA analysis: standard methods...........................................................................96 4.6.3.1 Southern blot, CSGE and DHPLC...................................................................96 ix 4.6.3.2 PCR amplification of exons in the F8 gene.....................................................97 4.6.4 DNA-analysis: methods for inversion/deletion/insertion mutations......................97 4.6.4.1 PCR for gross localization of the deletion in the gene F8...............................97 4.6.4.2 PCR amplification to determine the extent of the MPP1 insertion..................98 4.6.4.3 Long range PCR across the deletion and inside int22h1..................................98 4.6.4.4 Quantitative real-time PCR..............................................................................99 4.6.4.5 Analysis of sequence variations in the intron 22 homology regions..............100 4.6.4.6 Long-range PCR for detection of int22h-related inversions..........................101 4.6.5 DNA-analysis: identification of unknown flanking sequences............................101 4.6.5.1 Whole genome amplification with phi29 DNA polymerase..........................101 4.6.5.2 Inverse PCR....................................................................................................101 4.6.5.3 Primer walking with the Seegene-Kit............................................................102 4.6.5.4 TAIL-PCR......................................................................................................103 4.6.5.5 Unpredictably primed PCR............................................................................104 4.6.6 DNA-analysis: polymorphic markers...................................................................104 4.6.7 Cytogenetic methods............................................................................................105 4.7 Production of recombinant FVIII fragments...........................................................105 4.7.1 Vector construction..............................................................................................105 4.7.2 Cell culture...........................................................................................................106 4.7.3 Generation of stable cell lines producing recombinant proteins..........................106 4.7.4 Production and purification of His-tagged FVIII domains..................................106 4.8 Processing and analysis of plasma samples............................................................107 4.8.1 Bethesda Assay....................................................................................................107 4.8.2 Radio-immunoprecipitation.................................................................................107 4.8.3 Antibody purification...........................................................................................108 4.8.4 ELISA for total and FVIII-specific immunoglobulins.........................................109 4.9 Phage Display Methods...........................................................................................109 4.9.1 Selection of random peptides displayed by phage...............................................109 4.9.2 Phage titering........................................................................................................111 4.9.3 Amplification and purification of phage..............................................................111 4.9.4 Plaque amplification and rapid purification of sequencing templates.................111 4.9.5 Evaluation of sequences.......................................................................................111 4.9.6 Phage binding assays............................................................................................112 4.9.7 Competitive ELISA with peptides.......................................................................112 5. References..............................................................................................................113 Appendix...............................................................................................................................127 Additional tables....................................................................................................................127 List of figures.........................................................................................................................129 Acknowledgments..................................................................................................................130 Curriculum vitae....................................................................................................................131 List of publications.................................................................................................................132 x

Description:
genomic DNA was investigated by standard PCR, long-range PCR and primer walking techniques. Based on the recently published human X
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.