ebook img

Molecfit: A general tool for telluric absorption correction. I. Method and application to ESO instruments PDF

1.6 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Molecfit: A general tool for telluric absorption correction. I. Method and application to ESO instruments

Astronomy&Astrophysicsmanuscriptno.molecfit (cid:13)cESO2015 January29,2015 Molecfit: A general tool for telluric absorption correction(cid:63) I. Method and application to ESO instruments(cid:63)(cid:63) A.Smette1,H.Sana1,2,S.Noll3,H.Horst1,4,W.Kausch3,5,S.Kimeswenger6,3,M.Barden7,C.Szyszka3, A.M.Jones3,A.Gallenne8,J.Vinther9,P.Ballester9,andJ.Taylor9 1 EuropeanSouthernObservatory,Casilla19001,AlonsodeCordova3107Vitacura,Santiago,Chile e-mail:[email protected] 2 nowatESA/SpaceTelescopeScienceInstitute,3700SanMartinDr,Baltimore,MD21218,UnitedStates 3 InstituteforAstroandParticlePhysics,UniversitätInnsbruck,Technikerstrasse25,6020Innsbruck,Austria 4 Josef-Führer-Straße33,80997München,Germany 5 5 UniversityofVienna,DepartmentofAstrophysics,Türkenschanzstr.17(Sternwarte),A-1180Vienna,Austria 1 6 InstitutodeAstronomía,UniversidadCatólicadelNorte,AvenidaAngamos0610,Antofagasta,Chile 0 7 InternationalGraduateSchoolofScienceandEngineering,TechnischeUniversitätMünchen,Boltzmannstr.17,D-85748Garching 2 beiMünchen,Germany n 8 UniversidaddeConcepción,Casilla160-C,Concepción,Chile a 9 EuropeanSouthernObservatory,Karl-Schwarzschild-Strasse2,85748GarchingbeiMünchen,Germany J 8 Received<date>/Accepted<date> 2 ABSTRACT ] M Context.TheinteractionofthelightfromastronomicalobjectswiththeconstituentsoftheEarth’satmosphereleadstotheformation I oftelluricabsorptionlinesinground-basedcollectedspectra.Correctingfortheselines,mostlyaffectingtheredandinfraredregion . ofthespectrum,usuallyreliesonobservationsofspecificstarsobtainedcloseintimeandairmasstothesciencetargets,therefore h usingpreciousobservingtime. p - Aims.Wepresentmolecfit,atoolforcorrectingfortelluricabsorptionlinesbasedonsyntheticmodellingoftheEarth’satmospheric o transmission.Molecfitisversatileandcanbeusedwithdataobtainedwithvariousground-basedtelescopesandinstruments. r Methods. Molecfit combines a publicly available radiative transfer code, a molecular line database, atmospheric profiles, and t s variouskernelstomodeltheinstrumentlinespreadfunction.Theatmosphericprofilesarecreatedbymergingastandardatmospheric a profilerepresentativeofagivenobservatory’sclimate,oflocalmeteorologicaldata,andofdynamicallyretrievedaltitudeprofilesfor [ temperature,pressure,andhumidity.Wediscussthevariousingredientsofthemethod,itsapplicability,anditslimitations.Wealso showexamplesoftelluriclinecorrectiononspectraobtainedwithasuiteofESOVeryLargeTelescope(VLT)instruments. 1 Results.Comparedtoprevioussimilartools,molecfittakesthebestresultsfortemperature,pressure,andhumidityintheatmo- v sphereabovetheobservatoryintoaccount.Asaresult,thestandarddeviationoftheresidualsaftercorrectionofunsaturatedtelluric 9 linesisfrequentlybetterthan2%ofthecontinuum. 3 Conclusions.Molecfitisabletoaccuratelymodelandcorrectfortelluriclinesoverabroadrangeofwavelengthsandspectralreso- 2 lutions.Theaccuracyreachediscomparabletoorbetterthanthetypicalaccuracyachievedusingatelluricstandardstarobservation. 7 Theavailabilityofsuchageneraltoolfortelluricabsorptioncorrectionmayimprovefutureobservationalandanalysingstrategies,as 0 wellasempowerusersofarchivaldata. . 1 Keywords. radiativetransfer,atmosphericeffects,instrumentation:spectrographs,methods:observational,methods:dataanalysis, 0 technique:spectroscopic 5 1 : v 1. Introduction targetasitwouldappeariftheinstrumentwaslocatedabovethe i X atmosphere.Differentapproacheshavebeenproposed. Ground-basedobservationsand,inparticular,spectroscopycan r abe strongly affected by absorption caused by molecules in the Averycommonmethodistoobserveeitherarapidlyrotating Earth’s atmosphere. The wavelength ranges involved include, early-type or a G-type star (depending on the specific purpose) butarenotlimitedto,thenear-andmid-infrared.Itisastandard soonbeforeoraftertheobservationsofthesciencetarget.This practicetocorrectasmuchaspossibleforsuchtelluricabsorp- telluric star should ideally be located close to the science tar- tionlinesinordertorecoverthespectrum(orphotometry)ofthe getinthesky.Indeed,earlytypestarsareadvantageousbecause they are mostly featureless, except for hydrogen lines. Spectral regionscloseinwavelengthtotheoneofhydrogenlines,onthe (cid:63) Molecfit is available at http://www.eso.org/pipelines/ otherhand,arethereforebestcorrectedbyG-typestars.Therea- skytools (cid:63)(cid:63) Based on observations made with ESO Telescopes at the La sontoobservebothsciencetargetandtelluricstarcloseintime Silla Paranal Observatory under programme IDs: 60.A-9100, 60.A- is to eliminate differences caused by temporal variation in the 9452,076.C-0129,075.A-0603,079.D-0374,080.D-0526,290.C-5022, atmosphereasmuchasthepossible.Ontheotherhand,theneed 092.D-0024,084.D-0912,085.D-0161,086.D-0066,and088.D-0109 toobservebothobjectsangularlycloseontheskyarisesbecause Articlenumber,page1of18 A&Aproofs:manuscriptno.molecfit saturated and unsaturared telluric absorption lines do not scale peded any wide-spread use of such tools. The deviation of the with the same function of airmass. In addition, the distribution modelled absorption line from the observed one can be caused of molecules in the atmosphere (mainly water vapour) can de- byerrorsintheradiativetransfermodelling,poorrepresentation pendonthepointingdirection. of the line spread function, and/or limited accuracy of the me- Observationsofsuchtelluricstandardstarsrequiretelescope teorologicaldata.Inpractice,therefore,ageneraltoolallowing timethatcouldotherwisebededicatedtootherscientificobser- theuseofsimulatedatmospheretransmissionspectratocorrect vations.Thisisanecessarybutcostlypractice,especiallyinthe forEarth’satmospheretelluriclinesinawidevarietyofdatais coming era of extremely large telescopes. Whenever a limited simplynotavailabletotheastronomicalcommunityatlarge. timewindowofobservabilityisavailable,orinthecaseofhigh- Here we describe molecfit, a tool for modelling telluric cadencetimeseries,observationsoftelluricstarsfurtherreduce, lines. Molecfit retrieves the most appropriate atmospheric sometimes considerably, the amount of time that can be dedi- profile (i.e., the variation in the temperature, pressure, and hu- catedtothemainsciencetargets. midityasafunctionofaltitude)forthetimeofthegivenscience The quality of the correction can be variable and depends observations. It uses a state-of-the-art radiative transfer mod- considerably on the difference in airmass between the science ellingoftheEarth’satmosphere,togetherwithacomprehensive and telluric star observations, because in the best conditions, a databaseofmolecularparameters.Finally,itallowsforfittingan difference of 1% in airmass already introduces a 1% change in analyticallinespreadfunction,aswellasusingauser-provided theopticaldepthofunsaturatedtelluriclines.Examplesofother numerical kernel. Molecfit can be used from 0.3 to 30 µm problemsaffectingobservationsoftelluricstarsarethat(i)suit- (ormore)andcanbeconfiguredtoapplyondatacollectedbya abletelluricstarsthatarecloseenoughtothesciencetargetmay wide-rangeofopticalandinfraredinstrumentsfrommostobser- notbeavailable;(ii)atmosphericconditionsmaychangebythe vatories,makingitveryversatile. endofthescienceexposures;(iii)thesignal-to-noiseratioofthe The initial development of molecfit was carried out obtainedtelluricspectrummaybeinsufficient,eitherincompari- mostly as a set of IDL routines used as drivers for the Refer- sonwiththequalityofthescienceobservationsorwithrespectto ence Forward Model2 (hereafter, RFM) radiative transfer code. one’sscientificaims;(iv)post-observationanalysisofthespec- The initial goal was to measure the amount of precipitable wa- trumofthetelluricstarrevealsthatitdoesnothavetheexpected tervapourtowardszenith(hereafter,PWV)usingthe≈19.5µm spectral type or characteristics. Critically, telluric star observa- emissionlinewithVISIR,themid-infraredspectrographandim- tions may be missing as a result of inclement weather, instru- agerattheVLT(Smetteetal.2008).Thecodewasthenslightly mentalissues,humanerrors,and/orincompletecalibrationplan. modified to measure the amount of PWV using sky emission The use of archival data provides a particularly illustrative ex- linespectraobtainedwiththecryogenichigh-resolutioninfrared amplesinceobservationsofatelluricstarmaybemissingornot echellespectrographCRIRES,sincethe5.038to5.063µmrange appropriateforthesciencegoalpursuedbythearchiveuserasit ispurelydominatedbywatervapour3. maysignificantlydifferfromtheoneoriginallyintended. The good quality of the fits indicated that generalising the Alternatively, the emergence of freely available radiative codetoabsorptionlinesandotherspectralrangeswaspromising transfercodesforatmosphericresearchprovidesthepossibility andledtoawell-developedIDLprototype(Smetteetal.2010). of using synthetic transmission spectra instead of telluric stan- ItsperformancesweresimilartotheonecreatedbySeifahrtetal. dard stars. One of the first articles to demonstrate the ability (2010)thatonlyfocusedonCRIRESspectra.Thisprototypewas of this approach is Bailey et al. (2007), who used the radiative thenportedinarobustwaytoCPL4 andfurtherdevelopedand transfer model SMART (Meadows & Crisp 1996) for that pur- optimisedaspartoftheAustrianin-kindcontributionforjoining pose.Seifahrtetal.(2010)refinedthemethodincorporatingthe ESO. In the process, the LNFL/LBLRTM code (Clough et al. radiative transfer code LBLRTM (Clough et al. 2005), the line 2005)waschoseninsteadofRFM,becauseit(i)wasmorefre- databaseHITRAN(Rothmanetal.2009),acombinationofme- quentlyupdatedatthetimeofthecodeselection,(ii)isusedby teorologicaldatafromvarioussourcestoachievesynthetictrans- a large community, (iii) incorporates a code-optimised and up- mission curves, and a model of the line spread function. These to-date line list, and (iv) comprises broader functionality (e.g., were then used to successfully perform telluric absorption cor- UV/optical ozone absorption, which was needed in a parallel rectionsofCRIRES(Käufletal.2004)spectrauptoanaccuracy project (Noll et al. 2012)) and performs significantly faster for ofabout2percent.ThecodeLBLRTMisalsousedbyHusser most spectral ranges for similar or better precision. This series &Ulbrich(2013)whoincorporateditintotheirowncodetofit of papers describes the results of these efforts. In the present anentireinputspectrum. A different approach is used by Cotton et al. (2014). Since work,wedescribethekeyingredientsofmolecfit,itsapplica- bility,andlimitations,andweshowavarietyofapplicationsfor they investigate solar system planetary atmospheres containing ESO/VLTdatacoveringarangeofspectralresolvingpowerand similar molecules to those in the Earth’s atmosphere, they de- wavelengthregions.Inaseparatepaper,(Kauschetal.2014,Pa- rive the state of the latter by fitting spectral features of telluric perII),wehavesystematicallyinvestigatedthequalityofthetel- standardstarobservations.Gardinietal.(2013)usedtheradia- luriclineabsorptioncorrectionbyapplyingittothelargesample tivetransfermodel1developedfortheSCIAMACHYinstrument of archival VLT/X-shooter near-infrared data, and compared it onboard the ENVISAT satellite to fit water features visible in spectratakenattheSierraNevadaObservatory.Inaddition,they usedittodeterminetheamountofprecipitablewatervapourin 2 http://www.atm.ox.ac.uk/RFM/ theEarth’satmosphereatthetimeofobservation. 3 These VISIR and CRIRES measurements, together with UVES Unfortunately, the limited quality of these corrections, the and X-shooter measurements obtained using a different method, are specialised design and/or restricted availability has so far im- available at http://www.eso.org/observing/dfo/quality/ GENERAL/PWV/HEALTH/trend_report_ambient_PWV_closeup_ 1 RTMispartoftheSCIATRAN2.2softwarepackage,developedby HC.html. InstituteofRemoteSensing/InstituteofEnvironmentalPhysicsofthe 4 The Common Pipeline Library http://www.eso.org/sci/ UniversityofBremen,Germany software/cpl/documentation.htmlbasedonANSIC. Articlenumber,page2of18 A.Smetteetal.:Molecfit:Ageneraltoolfortelluricabsorptioncorrection withthestandardmethodperformedwiththeIRAFtelluric5 Table1.Specieswithaminorline-absorptioncontribution.Thespecific spectraarecalculatedwiththeradiativetransfercodeLBLRTM(resolu- task. tionR∼10000)withoutcontinuatoextractonlythelinecontribution. This paper is organised as follows. Section 2 describes the ThewavelengthrangesarealsoshowninFig.1. most important aspects regarding the absorption lines formed in the Earth’s atmosphere. Section 3 provides a description of themolecfitpackage.Afewcharacteristiccasesaredescribed Species Numberin Wavelengthrange Optical in Sect. 4. Limitations to the use of the tool are summarised Fig.1 [µm] depth[%] in Sect. 5. Examples of successful applications of molecfit on spectra obtained with several ESO instruments are given NO 1 5.153–5.556 <∼0.3 in Sect. 6. The most important aspects of molecfit are sum- HNO3 2 5.743–5.983 <∼1 marised in the conclusion. The technical aspects of molecfit 7.404–7.825 <∼2 and additional user guidance, including a description of the 10.890–11.694 <∼1 GraphicalUserInterface(GUI)thatallowsfordatainteraction, 20.452–23.478 <∼3 are provided in the User Manual (Noll et al. 2013), (hereafter, COF2 3 5.103–5.187 <∼0.01 UM). 7.935–8.157 <∼0.01 H2O2 4 >19.705 <∼0.3 HCN 5 2.959–3.092 <∼1 6.801–7.370 <∼1 2. AbsorptionarisingintheEarth’satmosphere 12.819–15.467 <∼4 NH3 6 5.755–6.530 <∼0.01 The Earth’s atmosphere consists of about 78% of N2, 21% of 8.904–12.571 <∼1 Oth2e,m1o%lecoufleAsra,nadndaersoevsoelrsalafftreacctestghaeselisghatntdraaveerlolisnoglst.hrEoaucghhoinf NO2 7 63..045112––63..348837 <∼<∼04.1 differentwavelengthregimesbyabsorptionandscattering.Fig- N2 8 3.966–4.650 <∼2 ure 1 shows a model transmission curve derived with the sky C2H2 9 12.957–14.523 <∼0.1 model developed in a parallel project (Noll et al. 2012). The C2H6 10 3.332–3.364 <∼2 main absorption regions of the eight major contributing molec- SO2 11 7.243–7.455 <∼0.01 ular species O , O , H O, CO, CO , CH , OCS, and N O are 2 3 2 2 4 2 marked.Thankstothecomplexityofthemolecules,severalro- vibrationalbandsareclearlyvisible. 3. Descriptionofthemolecfittelluriccorrection Theopticalregimeisdominatedbybroadabsorptionbands tool fromozone(Hugginsbandsshortwardsofλ ∼ 0.4µm,Huggins & Huggins (1890); Chappuis bands at ∼ 0.5 < λ/µm < 0.7, The molecfit package allows one to simulate and fit tropo- Chappuis (1880)), narrow oxygen bands (the prominent A, B sphericandstratosphericemissionorabsorptiontelluriclinesaf- and the weaker γ bands at ∼ 0.759 < λ/µm < 0.772, 0.686 < fectinguser-selectedregion(s)ofanobserved(usually,science) λ/µm < 0.695, and 0.628 < λ/µm < 0.634, respectively), and spectrum.Itusesparametersprovidedinaconfigurationfileand, somecomparablyweakwatervapourfeatures.Thelatterbecome if present, the FITS header of the spectrum. It then returns a dominantintheentireinfraredregimelongwardsofthe I band. transmission spectrum for the whole wavelength range of the Inadditioninthe JHK regime,thetransmissionissignificantly spectrum. affectedbyCO2,CH4,andO2.BetweentheKbandand∼18µm Molecfitincludesthefollowingingredients: absorptionsaremainlycausedbyH OandCO ,withsomecon- 2 2 tributionfromN2O,CH4,andminorabsorptionfeaturesbyCO 1. an automatic retrieval of two atmospheric profiles from the andOCS.Intheregimefrom18to30µmonlywatervapouris Global Data Assimilation System (GDAS) web site. These dominant.Overthewholewavelengthrange,thegaseslistedin profiles bracket the time of the observation and can be re- Table 1 lead to absorption features with optical depth reaching trieved for any observatory in the world. These profiles are upto5%atthegivenspectraresolvingpower(R∼10000). linearly interpolated to match the time of the observations The Earth’s atmosphere is highly variable on several time andmergedwithastandardprofileandlocalmeteorological scalesintemperature,pressure,andchemicalcomposition.The datatocreateaninputprofilefortheradiativetransfercode; most variable relevant molecule is water vapour, which is di- 2. aradiativetransfercodethatsimulatesatmosphericemission rectly related to the actual weather conditions at the time of andtransmissionspectra; observations. However, seasonal, daily, and sometimes hourly 3. amolecularspectroscopicdatabase; variations in the volume mixing ratio of various gases have 4. asimplegrey-bodycalculatorthatsimulatesthecontribution been measured, in particular, for CO2 (Thoning et al. 1989), ofthecontinuumfromtheinstrumentandtelescope; CH4 (Schneising et al. 2009), and O3 (Ramanathan & Ramana 5. achoiceofpossiblelinespreadfunctions(alsoreferredtoas Murthy1953).Inaddition,followingtheWorldMeteorological kernels); Organization6,thefractionofCO2hasincreasedby10−15,CH4 6. an automatised fitting algorithm that adjusts the continuum by∼10,andN2Oby∼8since1985(WorldMeteorologicalOr- spectrum, wavelength calibration, spectral resolution, and ganization2012)leadingtoglobalwarming.Dailycolumnsfor column density of each of the relevant molecules, with the a number of molecules (O3, N2O, CH2, etc.) over most of the possibility of excluding spectral regions expressed either in Earthsurfacecanbeobtainedfromhttp://www.temis.nl/. pixelsorinwavelengthregions. 5 http://iraf.net/irafhelp.php?val=telluric&help=Help+ Inthefollowing,wedescribeimportantaspectsofthesecom- Page ponentsinmoredetail.Wealsodiscussspecificchoicesmadefor 6 http://www.wmo.int/gaw theESOParanalobservatory. Articlenumber,page3of18 A&Aproofs:manuscriptno.molecfit HO HO HO Chappuis ozone absorption bands 2 2 2 n 1 o ssi 0.8 HO Transmi 000...246 O3 (Huggins bands) (γ bOa2nd)2 O2 (B band) 0 O (A band) 2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 wavelength [µm] HO HO HO HO 2 2 2 2 1 n sio 0.8 mis 0.6 CH4 s 0.4 CO an 0.2 O 2 Tr 2 0 CO2 CO2 CH4 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 wavelength [µm] NO O HO 2 3 HO NO 2 2 2 OCS 1 n sio 0.8 mis 0.6 s 0.4 Tran 0.2 N2O 0 O CO2 (5) (10) (7) CH4 (8) CO2 CO 3 CO2 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 wavelength [µm] (3) HO (11) (3) (9) 2 CO O CO CO 2 3 2 2 O 1 3 n missio 00..68 (7) N2O s 0.4 n a 0.2 Tr 0 (1) (2) (6) (5) (2) CH (6) (2) single H2O lines (5) 4 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 wavelength [µm] CO HO dominated regime O 2 2 1 3 n missio 00..68 N2O s 0.4 n a 0.2 Tr 0 single H2O lines (2) (4) (5) 15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20 20.5 21 21.5 22 22.5 23 23.5 24 24.5 25 25.5 26 26.5 27 27.5 28 28.5 29 29.5 30 wavelength [µm] Fig.1.Syntheticabsorptionspectrumoftheskybetween0.3and30µmcalculatedwithLBLRTM(resolutionR∼10000)usingtheannualmean profileforCerroParanal(Nolletal.2012).TheeightmainmoleculesO ,O ,H O,CO,CO ,CH ,OCS,andN Ocontributemorethan5%tothe 2 3 2 2 4 2 absorptioninsomewavelengthregimes.Theredregionsmarktherangeswheretheymainlyaffectthetransmission,minorcontributionsofthese moleculesarenotshown.Thegreenregionsdenoteminorcontributions(seeTable1)fromthefollowingmolecules:(1)NO,(2)HNO ,(3)COF , 3 2 (4)H O ,(5)HCN,(6)NH ,(7)NO ,(8)N ,(9)C H ,(10),C H ,and(11)SO . 2 2 3 2 2 2 2 2 6 2 Articlenumber,page4of18 A.Smetteetal.:Molecfit:Ageneraltoolfortelluricabsorptioncorrection 3.1. Atmosphericprofile bymolecfitcanbeeasilymodifiedtoanotherexistingorman- uallycreatedprofile. Thereferenceatmosphereisthenmergedwiththemodelled GDAS8 3-D data provided by the National Oceanic and At- 110000 mosphericAdministration9(NOAA).Thismodelcontainstime- dependentinformationonthetemperature,pressure,relativehu- ) midity, wind speed, and direction up to an altitude of ∼ 26km m ona3hbasis.Owingtothegeographical1◦ ×1◦ grid,wecre- k ( ated a set of profiles by means of an interpolation of the four ht 1100 gridpointsclosesttoCerroParanaltoobtainlocalinformation. g ei The GDAS profile derived for a specific observation is then by H defaultalinearinterpolationofthetworesultingprofilesclosest in time to the observation. The molecfit package contains all the available GDAS profiles for Cerro Paranal since December 11 1,2004at00:00UTandthereleasedateofthepackage.Inad- 1100−−44 1100−−22 110000 110022 110044 dition,ESOwillregularlymaintainsuchadatabaseforParanal. Volume mixing ratio (ppmv) Forobservationsobtainedlaterorfromanothersite,molecfit automaticallyretrievestheappropriateGDASfiles. 11..00 It may still be possible that no GDAS profiles are avail- 00..99 able for the time of observations. In the case of Cerro Paranal, y t molecfitthenusethebestmatchingtwo-monthaverage(Noll nsi 00..88 etal.2012).Alternatively,anASCIIprofilewiththesameformat e asaGDASprofilecanalsobeprovidedbytheuser. t n 00..77 i Afurtheroptionalrefinementofthefinalprofileisachieved e v 00..66 by incorporating on-site measurements obtained by the Astro- ati nomicalSiteMonitor(ASM)asprovidedintheFITSheaderor el 00..55 through a parameter file. The influence of the measured values R at the observatory altitude is gradually decreased up to a con- 00..44 figurableuppermixingheight,setbydefaultto∼ 5km,where, forParanal,thewinddirectionchangesbyanaverageof∼ 90◦ 55..004400 55..004455 55..005500 onaverage,asrevealedbyananalysisoftheGDASwinddata. Wavelength (µm) Thus,itcanbeassumedthatatthisaltitudetheinfluenceofthe local environment (as determined from the ASM data) has di- Fig. 2. Top: Two examples of the distribution of the water-vapour minished. More information on the merging procedure can be volume-mixingratioasafunctionofaltitude.Theblacksolidlinecor- foundintheUM. respondstoavolume-mixingratioof0ppmvupto3.1km(Paranalal- titude is 2.6km), while the red dashed line corresponds to a constant Water vapour is the molecule showing the most variations relativehumidityuntil3.1km. Thetotalamountofprecipitablewater becauseitstotalamount(PWV)anditsaltitudedistributioncan vapour,2mm,isidenticalforbothprofiles.Bottom:sampleofthecor- changesignificantlyandonashorttimescale.Inparticular,the responding transmission spectra at R = 100000. The higher amount largestamountofPWVmaynotbelocatedinthelowestlayers ofwatervapourintheloweratmosphericlayersabovetheobservatory oftheatmosphere.Figure2illustratestheimportanceofhaving leadstobothdeepercoresandstrongercontinuumabsorption. adecentprofileforwatervapour. ThetotalamountofPWVcanoptionallybesetifthevalue An atmospheric profile typically describes the temperature can be retrieved independently (for example, from radiome- T, pressure P, and volume mixing ratio x of several molecular ter measurements, see Kerber et al. (2012)). In this case, species as a function of altitude h for a given location. These the merged profile composed by the reference atmosphere, the parametershaveadirectimpactontheshapeandstrengthofall GDAS data, and the local meteo information will be scaled to the telluric lines. For molecfit we use a merged profile based the requested PWV. Alternatively, the atmospheric profile pro- on a reference atmospheric profile, modelled 3-D data, and on- videdbytheradiometer–soonretrievablefromtheESOarchive sitemeteorologicalmeasurements. –canbeuseddirectly. Thereferenceatmosphereprofileisbydefaulttheequatorial Figures3illustratestheeffectofthevariationoftheground profilederivedbyJ.Remedios7.Itcontainsabundancesofsev- temperatureandpressureontheH Otelluricspectrum.Depend- 2 eralmolecularspeciesuptoanaltitudeof120km,dividedinto ing on line parameters, different lines behave differently with 121 altitude levels. Owing to the low latitude of Cerro Paranal temperatureorpressure. (Lat:-24.6◦),theequatorialprofileisbettersuited(AnuDudhia, private communication) than the tropical or standard profiles, 3.2. Radiativetransfercode which are also available in the molecfit package. We note here thatthemolecularcompositionhaschangedsincetheprofilewas Theresultingmergedatmosphericprofileisusedasinputinthe createdin2001.Inparticular,thecontentofthegreenhouse-gas radiative transfer code LNFL/LBLRTM (Clough et al. 2005). carbon-dioxide content has increased by ∼ 6% (World Meteo- Theversionusedatthetimeofthefirstreleaseofthemolecfit rological Organization 2012). Molecfit allows the user to ei- packageisthelatestversionatthattime,V12.2.Thiscodepack- therfitormanuallyadjustthemolecularcontenttotakethisin- ageiswidelyusedinatmosphericsciencesandispubliclyavail- creaseintoaccount.Alternatively,thereferenceatmosphereused 8 http://www.ready.noaa.gov/gdas1.php 7 http://www.atm.ox.ac.uk/RFM/atm/ 9 https://ready.arl.noaa.gov/gdas1.php Articlenumber,page5of18 A&Aproofs:manuscriptno.molecfit Table 2. List of molecules as provided by the aer line parameter database. # Molecule Chemicalname Instandard GUI profile? 1 H O Water X f 2 2 CO Carbondioxide X f 2 3 O Ozone X f 3 4 N O Nitrousoxide X f 2 5 CO Carbonmonoxide X f 6 CH Methane X f 4 7 O Oxygen X f 2 8 NO Nitricoxide X c 9 SO Sulfurdioxide X c 2 10 NO Nitrogendioxide X c 2 11 NH Ammonia X c 3 12 HNO Nitricacid X c 3 13 OH Hydroxyl 14 HF Hydrogenfluoride 15 HCl Hydrogenchloride 16 HBr Hydrobromicacid 17 HI Hydrogeniodide 18 ClO Chlorinemonoxide X c 19 OCS Carbonylsulfide X c 20 H CO Formaldehyde 2 21 HOCl Hypochlorousacid X c 22 N Nitrogen X c 2 23 HCN Hydrogencyanide X c 24 CH Cl Chloromethane 3 25 H O Hydrogenperoxide X c 2 2 26 C H Acetylene X c 2 2 27 C H Ethane X c 2 6 28 PH Phosphine 3 29 COF Carbonylfluoride X c Fig.3. EffectofgroundtemperatureorpressurevariationontheH O 2 2 30 SF Sulfurhexafluoride X c telluric spectrum for two different spectral ranges. Each graph shows 6 31 H S Hydrogensulfide theratiobetweentelluricspectracomputedwiththeindicatedground 2 32 HCOOH Formicacid temperatureorpressure.Top: variationof1◦Cand10◦C.Theregion 33 HO Hydroperoxyl closeto3.68µmshowsoppositebehaviours.Bottom:variationof1mb 2 and10mb. 34 O Oxygen 35 ClONO Chlorinenitrate X c 2 36 NO+ Nitrosonium 37 HOBr Hypobromousacid able.Itcalculatesradianceandtransmissionspectrawithaspec- 38 C H Ethylene tralresolvingpowerofaboutfourmillion.Moreinformationcan 2 4 39 CH OH Methanol befoundatthewebsite10. 3 40 BrO BromineMonoxide 41 C H Propane 3 8 42 C N Cyanogen 3.3. Databaseofmolecularparameters 2 2 In addition to the profile, the radiative transfer code re- Notes. Col.1:referencenumberofthemoleculeasdefinedintheHI- quires a line database as input. The first release of molecfit TRAN 2008 database; Col. 2: its chemical formula, followed by its uses the database aer_v_3.2, which is delivered with the chemicalname.Col.3indicatesifanatmosphericprofileofthemolec- LNFL/LBLRTMcodepackage:itisbasedonanupdatedversion ularvolumemixingratioisavailableintheequatorialstandardprofile of the HITRAN 2008 database (Rothman et al. 2009) and con- asincludedin molecfit.Lastcolumn:functionalityavailablethrough tains information on more than 2.7 million spectral lines of 42 theGUI:f thecorrespondingcolumndensitycanbefitted,cthecorre- molecular species (see Table 2). The molecfit line database spondingtransmissionspectrumisonlycalculatedusingtheuserpro- videdabundance,relativetotheonefixedinthereferenceatmosphere. canbeeasilyupdatedwhenanewversionbecomesavailable. Only molecules for which an atmospheric volume mixing ratio is available in the standard atmosphere profile provided with molecfit can be used by default. These molecules are 3.4. Fittingalgorithm identifiedinTable2. Molecfit makes use of the C version of the least-squares fit- tinglibraryMPFIT(Markwardt2009)basedontheFORTRAN 10 http://rtweb.aer.com/lblrtm_frame.html fittingroutineMINPACK-1(Moré1978).ItusestheLevenberg- Articlenumber,page6of18 A.Smetteetal.:Molecfit:Ageneraltoolfortelluricabsorptioncorrection Marquardt technique to solve the least-squares problem lead- 3.8. Wavelengthcalibration ing to a fast convergence even for the complicated functions Thesciencespectratoanalyseareexpectedtohaveanaccurate involvedinmolecfit,whilebeingnumericallyrobustandself- wavelengthcalibration.However,smallerrorscanaffectthede- containedandallowingupperandlowerlimitsorparameterstied terminationofthelinespreadfunctionandcolumndensitiesneg- toeachotherthatcanbeindividuallyset. atively. Therefore in each inclusion region, the synthetic spec- trumbeingfittedcanbeadjustedtomatchtheinputspectrum.A 3.5. Inclusionandexclusionregions Chebyshevpolynomialofdegreen isusedforthispurpose: w Aspectrumshowsanumberoffeaturesthatcanbecharacterised (cid:88)nw inthefollowingway: λ= bt, (2) i i i=0 – intrinsicfeaturesfromthescienceobject, – telluricfeatures, where – isnptercintrsoicgrfaepahtuorresthferodmetetchteori.nstrument caused either by the t = λ1 ffoorrii==10 (3) i  2λ(cid:48)t −t fori≥2 Intrinsic features either from the science object or from the in- i−1 i−2 strumentcaninterferewiththefittingprocess. wherethewavelengthrangeisnormalisedsothatλ(cid:48)rangesfrom Therefore,molecfitallowsoneto: −1to1overtheentirespectralrangeofthespectrumor,inthe caseofmulti-chipinstruments,overtherangecoveredbyanin- – select inclusion regions, also called fitting ranges, whose dividualchip. mainpurposesaretoallow molecfittodeterminethecol- Theconversionofthewavelengthgridtoafixedintervalre- umn density of the relevant molecules and the line spread sultsincoefficientsb independentofthewavelengthrangeand function (or kernel). Such regions must therefore show a stepsizeoftheinputispectrum.Forb = 1andallotherb = 0, goodenoughcontinuumlevelforthefittingaccuracyandin- 1 i themodelspectrumremainsunchanged.Thisisthedefaultcon- cludetelluricabsorptionlinesfordeterminingthelinespread figurationfortheinitialcoefficients. function.Oneorseveralsuchregionsmustbedefinedsothat On the other hand, in some cases, one wishes to use the at least some telluric lines from each molecule to be cor- telluric lines as references to improve an unsatisfactory initial rectedarecovered. wavelengthcalibration.ThisisthecaseforCRIRESinparticu- – selectexclusionregionswithintheinclusionregionsthatare lar. For such a purpose, molecfit actually outputs the inverse affectedbythepresenceofintrinsicfeaturesfromthescience ofthewavelengthcalibrationdescribedinEq.2,inthesensethat objects; the input spectrum is then adjusted to match the synthetic one. – maskpixelsintheinclusionregionsthatareaffectedpurely Suchwavelengthcalibrationisonlymeaningfulwhentheinclu- byinstrumentalordetectoreffects. sion range covers the whole spectrum and is sampled well by telluriclines. DetailscanbefoundintheUM. 3.9. Linespreadfunction 3.6. Continuumcontribution Themodelspectrumisconvolvedwithuptothreedifferentpro- The model spectrum, Fout, is scaled by a polynomial of degree filestodeterminetheshapeofthelinespreadfunction.Theyare: n : c 1. asimpleboxcar (cid:88)nc F (λ)= F (λ) aλi. (1) (cid:40) out in i 1 for −w /2≤λ≤w /2 i=0 Fbox(λ)= 0 forλ<−bowx /2orλ>bowx /2 , (4) box box Fora =1andallothera =0,themodelspectrumremains 0 i which is adapted to the pixel scale and normalised to an unchanged.Thisisthedefaultconfigurationfortheinitialcoef- integral of 1. This kernel is particularly useful for objects ficients. The continuum correction is carried out independently fullycoveringtheentranceslit;and for each fitting range. A fitting range (or the full spectrum) is splitfurtherifitisdistributedovermorethanonechip. 2. aGaussian If the input spectrum is an emission line spectrum, an op- tional flux conversion can be carried out in order to match the 1 (cid:32) λ2 (cid:33) unit of the synthetic spectrum. Further details are available in Fgauss(λ)= σ√2πexp − 2σ2 (5) theUM. centredon0,where 3.7. Telescopebackground w σ= √gauss . (6) For sky emission modelling, the telescope background is as- 2 2ln2 sumed to be a grey body (black body times emissivity). The parameters of this grey body correspond to the telescope main Thefullwidthathalfmaximum(FWHM),w ,isgivenin gauss mirror temperature and an effective emissivity of the telescope pixels. andinstrument. Articlenumber,page7of18 A&Aproofs:manuscriptno.molecfit 3. aLorentzian Molecfit allows the user to adjust this quantity based on the observed telluric lines, and we note that the GUI only al- 1 λ F (λ)= (7) lows one to fit the column density for the molecules indicated lorentz π λ2+(w /2)2 lorentz inthelastcolumnofTable2.Thisadjustmentisdonebymulti- plying the overall atmospheric profile by a single constant. For centred on 0, where w is the FWHM in pixels. Com- lorentz most molecules, the impact is actually limited to the lowest at- pared to a Gaussian, the Lorentzian approaches the 0-level mosphericlayers. fluxsignificantlymoreslowly. A kernel consisting of all three components is usually too 3.11. Supportedinstruments complex to be constrained by a fit. To avoid unrealistic best-fit FWHM, the user should reduce the number of degrees of free- One-dimensional (1-D) spectra of any visible, near-, or mid- dombyfixingindividualfitcomponents.AFWHMofzeropixel infrared instrument could in principle be used by molecfit. corresponds to a unity convolution; in other words, it does not DetailsontherequiredinformationcanbeobtainedintheUser changetheinputspectrum. Manual (Noll et al. 2013). Although the tool has been tailored Alternatively,theuserhasthepossibilityofchoosingasin- to ESO-Paranal instruments – in particular, the GDAS profiles gle Voigt profile kernel directly, which is then calculated by areavailableasatarballfileonlyforthissite–therearenospe- anapproximateformulathattakestheFWHMofGaussianand cificlimitationseitherinthetermsofformatoringeographical Lorentzian as inputs. The user can also select a kernel whose locationforaground-basedobservatory. size in pixels linearly increases with wavelength. It is suitable foraninstrumentalsetupwithnearlyconstantresolvingpower, fixed wavelength step size, and a wide wavelength range, such 3.12. Inputsandoutputs ascross-dispersedechellespectrographs. Molecfitaccepts1-DspectraprovidedasASCIItables,FITS Finally,auser-definedkernelcanbeprovidedintheformof tables,andimages.TheFITStablescanhaveseveralextensions an ASCII table of fixed kernel elements. This option overrules correspondingtodifferentchips(e.g.,CRIRES).Requiredkey- theparameterisedkerneldiscussedabove.Aninappropriateker- words are either taken from the FITS header or directly from nel can cause deviations in the determination of molecular col- theparameterfile.Finally,ASCIIorFITSfilesforinclusionand umndensitiesofmorethan10%. exclusionregionscanbeprovided. Molecfit fits the synthetic spectrum in the inclusion re- 3.10. Molecularvolume-mixingratio gionsalone.Theseregionscancoverjustasmallfractionofthe wavelength range or all of it. It returns the best-fit model only The integrated volume mixing ratio, X(h ), of a molecule for a 0 fortheinclusionregionsinbothanASCIIandaFITStable,and column of air from the observer at an altitude h to the top of 0 the best-fitparameters and molecularcolumn densities (includ- atmospherecanbederivedby ingthePWV)inaresultsASCIIfile. (cid:82)∞ x(h)P(h)dh The molecfit package then outputs a transmission spec- X(h0)= h(cid:82)0∞ TP((hh))dh (8) tsriuomnsapnedctrtuhme doivveirsitohnefoufllthspeeicntrpaultrasnpgecetroufmthebyinpthuetstpraencstrmumis-. h0 T(h) Apart from results tables in ASCII and FITS format, the cor- ifthemixingratio(ormolefraction) x,airpressureP,andtem- rected spectrum is written into a file in the same format as the peratureT aregivendependingonaltitudehbyanatmospheric inputspectrum(seetheUMformoredetails) profile.Volume-mixingratiosareusuallygiveninpartpermil- In addition, molecfit can provide a new wavelength cali- lioninvolume(ppmv). brationbasedonthetelluriclinesasdescribedinSect.3.8.This For H O, it is also common to provide the column height two-stepapproachgreatlyimprovesthespeedoftheoverallpro- 2 ofPWV inmm (alsoreferred toasamount ofPWV). Itcan be cess. calculatedby m (cid:90) ∞ x (h)P(h) 3.13. Expertmode PWV= mol,H2O H2O dh, (9) ρH2OR h0 T(h) Inmostcasesmolecfitisabletodeterminethedifferentuser- selected parameters automatically with a minimum of configu- where the mole mass of water m = 0.0182kg, the den- mol,H2O ration. However, in a few cases, mostly for CRIRES, a much sity of liquid water ρ ≈ 103kgm−3, and the gas constant R = 8.31446Jmol−1KH−2O1. The required units of x, P, T, and h greater flexibility is needed. An expert mode is therefore also provided. It allows the user to fit the spectra on each inclusion are ppmv, Pa, K, and km, respectively. Molecfit outputs the range individually and provides him/her the access to the coef- columnheightforothergasesusingasimilarformula. ficients of the polynomials for the continuum and wavelength Since the GDAS profiles and the ESO MeteoMonitor data correction.Moreover,theparameterfilewiththebest-fitvalues provideanH Ovolume-mixingratioasrelativehumidityRHin 2 forallparametersissavedandcanbeusedforanotheriteration percent, it has to be converted to x. For this purpose, we have ofmolecfit. implementedtheapproximationsforvapourpressuresoficeand supercooled water as function of temperature as described by Murphy&Koop(2005).Theminimumofboththencorresponds 3.14. Fittingskyemissionspectra to the saturated vapour pressure P , which is used to estimate sat The tool is able to fit sky emission spectra for molecules and thealtitude-dependentxinppmvby physical processes handled by the radiative transfer code, with P (T(h)) RH(h) theexclusionoflinesproducedbychemiluminescence(suchas x(h)=106 sat . (10) OH,see,e.g.,Nolletal.(2012)).Inotherwordsmolecfitcan P(h) 100 Articlenumber,page8of18 A.Smetteetal.:Molecfit:Ageneraltoolfortelluricabsorptioncorrection inprincipledeterminethelinespreadfunctionandcolumndensi- such astrategy isshown belowin Sect.6.8 andis illustrated in tiesoftherelevantmoleculesandthereforederivethetransmis- particularinFig.12.Anotherpossiblestrategyistoensurethat sion spectrum of the atmosphere based the sky emission spec- thespectralsetupincludesspectralregionscontainingrepresen- trumifthespectralrangeislocatedinthethermalinfrared. tativetelluriclinesbutfreeofintrinsiclines. 4. Impactonobservingstrategy 4.4. Emissionlinespectra Although powerful, molecfit is not necessarily suited to tel- Thetellurictransmissionspectrumcannotbefittedonthespec- luric corrections in all cases. In this section, we briefly discuss trumofanobjectshowinglittleornocontinuum,suchasafaint afewsituationstoconsiderwhiledecidingonthedetailsofthe cometaryspectrumoranemissionlineobject.Asuggestedstrat- observingstrategyfortheabsorptiontelluriccorrection. egyinthiscaseiseithertoretrieveaspectrumofatelluricstar fromthearchiveorobserveatelluricstarinthespectralset-upof interest.Itsspectrumcanbemodelledbymolecfit.Themodel 4.1. Maincases can then be modified easily by changing the airmass such that it corresponds to the airmass of the science target. If the water Twomaincasesfortheuseof molecfitcanbeconsidered,de- vapouratthesiteismonitored,themodelcanalsobemodified pendingonwhetherthewavelengthcalibrationofthespectrum accordingly. The number of times telluric stars need to be ob- isreliableandaccurate(root-mean-squaredresiduals≈0.1pixel servedisthereforereducedsignificantly. orbetter)ornot. In the case of accurate wavelength calibration, the main re- quirement is that the spectrum to be corrected has at least one 5. Limitations spectralregionthatincludesmedium-strengthmolecularlinesof themostvariablerelevantspeciesandthattheselinesareisolated In this section, we briefly discuss the various factors that limit enoughsothattheircolumndensityandthelinespreadfunction theaccuracyofthemolecfitcorrectionoftelluricspectra.Such canbedetermined. factorscanbeexternaltomolecfit,andarerelatedtotheaccu- If the wavelength calibration is not reliable but needs to be racywithwhichinstrumentalparametersaretakenintoaccount corrected by molecfit based on the telluric lines themselves, orareinternaltothemethoditself. a – possibly delicate – selection of inclusion and exclusion re- gions must be carried out, such that only telluric lines appear 5.1. External intheinclusionregionsandthatanyintrinsicfeatureoftheob- ject is masked out in the exclusion regions. In case the contin- Molecular parameters’ accuracy and completeness: A first uumneedstoberefinedbymolecfit,thefittingregionsneedto limitation arises owing to the completeness of the incorporated presentenoughcoveragetobeabletodetermineeitheranoverall line database and on the accuracy of the contained molecular continuumorlocalcontinua. parameters. Currently, the AER line database delivered with the LBLRTM code is included by default with molecfit. It is usually more frequently updated than the underlying main 4.2. Simplecontinuumshapeandsmallnumberofintrinsic HITRAN11 and is therefore recommended. However, although features molecfit a priori allows one to use the original HITRAN Theeasiestspectrathatcanbemodelledbythetoolaretheones database, this functionality is subject to the stability of the for objects with a well-defined and simple continuum and with databasestructure. limitedconfusionbetweentelluricandintrinsicfeatures.Insuch conditions,thetoolcanproperlymodelthecontinuumspectrum of the object, and the parameters of the telluric features can be Molecules in atmospheric profile: Molecfit only offers the possibility to fit the overall volume mixing ratio along the line wellconstrained. ofsightintheatmosphere:theoverallshapeoftheprofileisnot adjusted. If the actual profile differs from the modelled one in 4.3. Largenumberofintrinsicfeatures someatmosphericlayers,systematicerrorscanoccur.Inpartic- ular such a situation can be caused by the specific, temporary If the number of intrinsic features is large in the spectral do- volume-mixing ratios of a molecule and is relatively frequent mainofinterest,severaloptionsarepossible.Thechoiceofthe for water vapour. Figure 2 illustrates the possible impact in an best option depends on the line crowding: a first constraint is extremecase. thenumberofpointsthatcanbeusedtodeterminethespectral In particular, the accuracy of the transmission spectrum de- continuum;asecondconstraintisthenumberofspectralranges rivedfromskyemissionasdescribedinSect.3.14stronglyde- where telluric lines can be used to determine the column den- pendsontheprecisionwithwhichtheretrievedatmosphericpro- sity of the molecules contributing in this spectral domain. An fileactuallyrepresentsthetrueone. additional constraint arises if the wavelength calibration is not reliable. Thereforeapossiblestrategyisfirsttoobserveatelluricstar Atmospheric profile stability: Any correction of telluric ab- with the same setup – or retrieve corresponding data from the sorptionrequiresarelativelystableatmosphere.Thearrivalofan archive–anduse molecfitonitsreducedspectrumtodeter- atmospheric front is a clear case where the atmospheric profile mine which molecules are relevant, the wavelength calibration changessuddenly.EveniftheGDASprofileswouldshowsucha orcontinuumdetermination.Then,molecfitcanbeappliedto front,itsprecisetimingandcharacteristicsareusuallyuncertain the science target using the derived wavelength calibration (if andsurelydependonthepointingdirection.Fortunately,fewop- relevant),changingtheairmass,orfittingthecontinuumand/or thecolumndensitiesofthemoleculesinvolved.Anexampleof 11 http://www.cfa.harvard.edu/HITRAN/ Articlenumber,page9of18 A&Aproofs:manuscriptno.molecfit ticalorinfraredastronomicalobservationsareexecutedinsuch 5.3. Internal conditions. Good internal guess values: By essence of the Levenberg- Marquardtfittingapproach,molecfitneedsandissensitiveto Radiativetransfercodeaccuracy: Thereaderisreferredtothe theinitialguesssolution.Inparticular,molecfitisdesignedto publicationlistavailableontheLBLRTMwebpage12 forrefer- refinethewavelengthcalibrationandcontinuumdetermination, ences regarding the validation of the radiative transfer code. In but it is not designed to measure these values from an uncali- particular,itisworthrepeatingherethat“thealgorithmicaccu- bratedspectrum.Adequateinitialestimatesimprovetherobust- racy of LBLRTM is approximately 0.5% and the errors associ- nessofthefitandthespeedoftheconvergenceprocess.Knowl- ated with the computational procedures are of the order of five edgeofthelinespreadfunctionandspectralresolvingpowerare timeslessthanthoseassociatedwiththelineparameterssothat alsoimportant,althoughthelattercanbeadjustedbymolecfit. the limiting error is that attributable to the line parameters and thelineshape”. Finite pixel size: Molecfit results are best when the spectral resolutionisatleastNyquistsampledbytheinstrument.Inany 5.2. Instrumental case, molecfit takes the finite pixel size of the spectrum into account: molecfit estimates the highest pixel resolution in a Grating scattering: Internal diffusion strongly limits the spectrum by evaluating the wavelength grid. An oversampling achievableaccuracyofthemodelling.Villanuevaetal.(2009,in- factor of 5 is then applied on the input to the radiative transfer ternalcommunication)foundthattheCRIRESlinespreadfunc- code. tion is best reproduced by a Voigt profile that needs to be cal- culated over ≈ 1000 pixels to account for the grating scattered light within the instrument. As a consequence, it often appears 6. Examples thatthecoreofheavilysaturatedabsorptionlinesdoesnotreach In the following, we illustrate the versatility of molecfit zero intensity. The amount of flux in the core actually depends through its application to data sets obtained with various ESO onthespectralenergydistributionofthelightreachingthegrat- ing and cannot be modelled accurately by molecfit, because VLT instruments covering a range of spectral resolving powers molecfitonlyappliestheconvolutionofthelinespreadfunc- andwavelengthdomains. tion to the transmission spectrum and not to the science target one. In addition, later investigation (Uttenthaler 2010, private 6.1. UVES communication) indicates that the spatial profile of the grating scatteredlightisdifferentfromtheoneofthedirectlight. The prototype version of molecfit was manually adjusted The observed spectrum therefore combines different effects to determine the location and strength of telluric absorption that cannot be easily modelled by molecfit. Therefore they lines in VLT UV–Visual Échelle Spectrograph (UVES, Dekker limittheaccuracyofthecorrectionsuchthatresidualscanreach et al. 2000) Rapid Response Mode or Target-of-Opportunity anestimated1%ofthecontinuumdependingonthesignificance programmes of γ-ray bursts (UVES is a high-resolution cross- ofthegratingscattering. dispersed spectrograph in the visible): indeed, some H2O lines mimic lines associated with high-redshift damped Ly-α (DLA) lines. For example, in the spectrum of GRB050730 (Ledoux Instrumental background: When modelling sky emission et al. 2009) obtained under Programme ID 075.A-0603 (P.I.: spectra,molecfitusesabackgrounddefinedbyagreybodyat Fiore),H OlinesappearcoincidentinwavelengthwiththeSiii 2 the temperature of the main mirror of the telescope. It assumes 2P λ1816line,andaffecttheFeii6D λ1267andFeii4F 3/2 7/2 7/2 thatthethermalbackgroundfromtheinstrumentisnegligible. λ1659lines,allassociatedwiththez=3.69857DLA.Similarly, as shown in Fig. 4, using molecfit allowed the location and strengthof theH Olines affectingthe Feii λ2382, λ2374,Feii Instrumental response curve shape: Molecfit fits a low- 2 4D ,andλ2389linestobedetermined(amongstothers)associ- orderpolynomialtotheobservedcontinuumoftheinput(object 7/2 atedwiththez = 2.42743DLAinthespectrumofGRB080310 spectrum)foreachinclusionregion.However,itdoesnotmake a difference between the intrinsic continuum shape and the ef- (DeCiaetal.2012)obtainedunderprogrammeID080.D-0526 (PI.Vreeswijk). fect of the response curve of the instrument. Good results are obtainediftheobservedcontinuumofeachinclusionregioncan be modelled well by such polynomials. Alternatively, the user 6.2. FLAMES mayprovideanormalisedspectrumasinput. Figure 5 presents a Fibre Large Array Multi Element Spectro- graph(FLAMES)/GiraffespectrumoftheO4VstarNGC3603- Linespreadfunction: Thelinespreadfunctionshouldbehave 117observedwiththeLR8settingandtheARGUSintegralfield welloverthewavelengthrangeofinterest,eitherbeingconstant unit(datacourtesyofM.Gieles;Prog.ID:079.D-0374(A)),pro- or having a width that is linearly dependent on wavelength, as vidingaspectralresolvingpowerofR ≈ 10400.Thepresented expectedincross-dispersedspectrographs. spectrumcorrespondstothebrightestspaxelontheobject. When the transmission spectrum is derived from the sky The presence of water-vapour telluric absorption lines im- emissionspectrum(Sect.3.14),oneshouldnotethattheparam- pedesanyprecisedeterminationofthewidthandcentroidofthe eters of the line spread function are likely to be different from Paschen hydrogen lines at 901 and 923 nm. However, there is theoneofthesciencetargetgiventhattheimageofthestardoes usuallynoobservationoftelluricstarsforFLAMES.Molecfit notuniformlyilluminatetheentranceslit. can be used to determine the PWV and to correct the science spectrumbythetransmissionspectrum.Asaresult,aprecisede- 12 Inparticular,http://rtweb.aer.com/lblrtm_ref_pub.html terminationofthewidthandpositionofthelinescanbeobtained Articlenumber,page10of18

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.