ebook img

Moduli of Double EPW-Sextics PDF

188 Pages·2016·1.982 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Moduli of Double EPW-Sextics

MEMOIRS of the American Mathematical Society Volume 240 • Number 1136 • Forthcoming Moduli of double EPW-sextics Kieran G. O’Grady ISSN 0065-9266 (print) ISSN 1947-6221 (online) American Mathematical Society Licensed to Tulane Univ. Prepared on Fri Dec 4 18:26:23 EST 2015for download from IP 129.81.226.78. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms MEMOIRS of the American Mathematical Society Volume 240 • Number 1136 • Forthcoming Moduli of double EPW-sextics Kieran G. O’Grady ISSN 0065-9266 (print) ISSN 1947-6221 (online) American Mathematical Society Providence, Rhode Island Licensed to Tulane Univ. Prepared on Fri Dec 4 18:26:23 EST 2015for download from IP 129.81.226.78. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms Library of Congress Cataloging-in-Publication Data Cataloging-in-PublicationDatahasbeenappliedforbytheAMS.See http://www.loc.gov/publish/cip/. DOI:http://dx.doi.org/10.1090/memo/1136 Memoirs of the American Mathematical Society Thisjournalisdevotedentirelytoresearchinpureandappliedmathematics. Subscription information. Beginning with the January 2010 issue, Memoirs is accessible from www.ams.org/journals. The 2015 subscription begins with volume 233 and consists of six mailings, each containing one or more numbers. Subscription prices for 2015 are as follows: for paperdelivery,US$860list,US$688.00institutionalmember;forelectronicdelivery,US$757list, US$605.60institutional member. Uponrequest, subscribers topaper delivery ofthis journalare also entitled to receive electronic delivery. If ordering the paper version, add US$10 for delivery withintheUnitedStates;US$69foroutsidetheUnitedStates. Subscriptionrenewalsaresubject tolatefees. Seewww.ams.org/help-faqformorejournalsubscriptioninformation. Eachnumber maybeorderedseparately;please specifynumber whenorderinganindividualnumber. Back number information. Forbackissuesseewww.ams.org/backvols. Subscriptions and orders should be addressed to the American Mathematical Society, P.O. Box 845904, Boston, MA 02284-5904USA. All orders must be accompanied by payment. Other correspondenceshouldbeaddressedto201CharlesStreet,Providence,RI02904-2294USA. Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for useinteachingorresearch. Permissionisgrantedtoquotebriefpassagesfromthispublicationin reviews,providedthecustomaryacknowledgmentofthesourceisgiven. Republication,systematiccopying,ormultiplereproductionofanymaterialinthispublication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are handled by Copyright Clearance Center’s RightsLink(cid:2) service. Formoreinformation,pleasevisit: http://www.ams.org/rightslink. Sendrequestsfortranslationrightsandlicensedreprintstoreprint-permission@ams.org. Excludedfromtheseprovisionsismaterialforwhichtheauthorholdscopyright. Insuchcases, requestsforpermissiontoreuseorreprintmaterialshouldbeaddresseddirectlytotheauthor(s). Copyrightownershipisindicatedonthecopyrightpage,oronthelowerright-handcornerofthe firstpageofeacharticlewithinproceedingsvolumes. MemoirsoftheAmericanMathematicalSociety (ISSN0065-9266(print);1947-6221(online)) ispublishedbimonthly(eachvolumeconsistingusuallyofmorethanonenumber)bytheAmerican MathematicalSocietyat201CharlesStreet,Providence,RI02904-2294USA.Periodicalspostage paid at Providence, RI.Postmaster: Send address changes to Memoirs, AmericanMathematical Society,201CharlesStreet,Providence,RI02904-2294USA. (cid:2)c 2015bytheAmericanMathematicalSociety. Allrightsreserved. (cid:2) ThispublicationisindexedinMathematicalReviewsR,Zentralblatt MATH,ScienceCitation Index(cid:2)R,ScienceCitation IndexTM-Expanded,ISI Alerting ServicesSM,SciSearch(cid:2)R,Research (cid:2) (cid:2) (cid:2) AlertR,CompuMathCitation IndexR,Current ContentsR/Physical, Chemical& Earth Sciences. ThispublicationisarchivedinPortico andCLOCKSS. PrintedintheUnitedStatesofAmerica. (cid:2)∞ Thepaperusedinthisbookisacid-freeandfallswithintheguidelines establishedtoensurepermanenceanddurability. VisittheAMShomepageathttp://www.ams.org/ 10987654321 201918171615 Licensed to Tulane Univ. Prepared on Fri Dec 4 18:26:23 EST 2015for download from IP 129.81.226.78. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms Dedicato alla piccola Emma Licensed to Tulane Univ. Prepared on Fri Dec 4 18:26:23 EST 2015for download from IP 129.81.226.78. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms Licensed to Tulane Univ. Prepared on Fri Dec 4 18:26:23 EST 2015for download from IP 129.81.226.78. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms Contents Chapter 0. Introduction 1 Chapter 1. Preliminaries 7 1.1. EPW-sextics and their double covers 7 1.2. Double EPW-sextics modulo isomorphisms 8 1.3. The GIT quotient 10 1.4. Moduli of plane sextics 11 Chapter 2. One-parameter subgroups and stability 13 2.1. Outline of the section 13 2.2. (Semi)stability and flags 14 2.3. The Cone Decomposition Algorithm 17 2.4. The standard non-stable strata 19 2.4.1. The definitions 19 2.4.2. Geometric significance of certain strata 22 2.5. The stable locus 25 2.6. The GIT-boundary 29 Chapter 3. Plane sextics and stability of lagrangians 31 3.1. The main result of the chapter 31 3.2. Plane sextics 31 3.3. Non-stable strata and plane sextics, I 35 3.4. Non-stable strata and plane sextics, II 40 Chapter 4. Lagrangians with large stabilizers 49 4.1. Main results 49 4.2. A result of Luna 49 4.3. Lagrangians stabilized by a maximal torus 50 4.4. Lagrangians stabilized by PGL(4) or PSO(4) 53 4.5. Lagrangians stabilized by PGL(3) 57 Chapter 5. Description of the GIT-boundary 59 5.1. Main results 59 5.2. A GIT set-up for each standard non-stable stratum 60 5.2.1. Set-up 60 5.2.2. The Hilbert-Mumford numerical function 62 5.3. Summary of results of Chapters 6 and 7 62 5.4. Proof of Theorem 5.1.1 assuming the results of Chapters 6 and 7 63 5.4.1. Dimensions 63 5.4.2. No inclusion relations 63 v Licensed to Tulane Univ. Prepared on Fri Dec 4 18:26:23 EST 2015for download from IP 129.81.226.78. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms vi CONTENTS Chapter 6. Boundary components meeting I in a subset of XW ∪{x,x∨} 65 6.1. BC 65 1 6.1.1. First results 65 6.1.2. Properly semistable points of SF 66 C 6.1.3. Semistable lagrangians A with d1imΘ ≥2 or C =P(W). 69 A W,A 6.1.4. Analysis of Θ and C 70 A W,A 6.1.5. Wrapping it up 73 6.2. BA 74 6.2.1. The GIT analysis 74 6.2.2. Analysis of Θ and C 76 A W,A 6.2.3. Wrapping it up 77 6.3. BD 77 6.3.1. Quadrics associated to A∈SF 78 D 6.3.2. The GIT analysis 80 6.3.3. Analysis of Θ and C 83 A W,A 6.3.4. Wrapping it up 90 6.4. BE 90 1 6.4.1. The GIT analysis 91 6.4.2. Analysis of Θ and C 96 A W,A 6.4.3. Wrapping it up 99 6.5. BE∨ 100 1 6.5.1. The GIT analysis 101 6.5.2. Analysis of Θ and C 101 A W,A 6.5.3. Wrapping it up 103 6.6. BF 104 1 6.6.1. The GIT analysis 104 6.6.2. Analysis of Θ and C 105 A W,A 6.6.3. Wrapping it up 106 Chapter 7. The remaining boundary components 107 7.1. BF 107 2 7.2. BF ∩I 111 2 7.2.1. Set-up and statement of the main results 111 7.2.2. The3-foldsweptoutbytheprojectiveplanesparametrizedbyi (D)112 + 7.2.3. Explicit description of Wψ . 113 fix 7.2.4. XV is irreducible of dimension 3 114 7.2.5. Points of BF2 ∩I are represented by lagrangians in Wψfix 119 7.2.6. C for A∈Xψ and W spanned by α∈V , β ∈V and γ ∈V 123 W,A V 01 23 45 7.2.7. Proof that BF ∩I=XV 129 2 7.3. XN 129 3 7.4. XN ∩I 132 3 7.4.1. Set-up and statement of the main results 132 7.4.2. Duality 135 7.4.3. Properties of XZ 136 7.4.4. Points of XN3 ∩I are represented by lagrangians in Yψfix 141 7.4.5. Proof that XN ∩I=XW ∪XZ 144 3 Appendix A. Elementary auxiliary results 149 A.1. Discriminant of quadratic forms 149 Licensed to Tulane Univ. Prepared on Fri Dec 4 18:26:23 EST 2015for download from IP 129.81.226.78. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms CONTENTS vii A.2. Quadratic forms of corank 2 150 A.3. Pencils of degenerate linear maps 152 Appendix B. Tables 155 Bibliography 171 Licensed to Tulane Univ. Prepared on Fri Dec 4 18:26:23 EST 2015for download from IP 129.81.226.78. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms Licensed to Tulane Univ. Prepared on Fri Dec 4 18:26:23 EST 2015for download from IP 129.81.226.78. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms Abstract WewillstudytheG(cid:2)ITquotientofthesymplecticgrassmannianparametrizing lagrangian subspaces of 3C6 modulo the natural action of SL , call it M. This is 6 a compactification of the moduli space of smooth double EPW-sextics and hence birational to the moduli space of HK 4-folds of Type K3[2] polarized by a divisor of square 2 for the Beauville-Bogomolov quadratic form. We will determine the stable points. Our work bears a strong analogy with the work of Voisin, Laza and Looijenga on moduli and periods of cubic 4-folds. We will prove a result which is analogoustoatheoremofLazaassertingthatcubic4-foldswithsimplesingularities arestable. WewillalsodescribetheirreduciblecomponentsoftheGITboundaryof M. Ourfinalgoal(notachievedinthiswork)istounderstandcompletelytheperiod map from M to the Baily-Borel compactification of the relevant period domain modulo an arithmetic group. We will analyze the locus in the GIT-boundary of M where the period map is not regular. Our results suggest that M is isomorphic to Looijenga’s compactification associated to 3 specific hyperplanes in the period domain. ReceivedbytheeditorOctober6,2012and,inrevisedform,March7,2014. ArticleelectronicallypublishedonOctober9,2015. DOI:http://dx.doi.org/10.1090/memo/1136 2010 MathematicsSubjectClassification. Primary14J10,14L24,14C30. Key wordsand phrases. GITquotient,periodmap,hyperk¨ahlervarieties. TheauthorwassupportedbyPRIN2007. The author is affiliatedwith Sapienza Universit`a di Roma,Dipartimento di MatematicaG. Castelnuovo,Roma,Italy. (cid:2)c2015 American Mathematical Society ix Licensed to Tulane Univ. Prepared on Fri Dec 4 18:26:23 EST 2015for download from IP 129.81.226.78. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.