ebook img

Modular Functions and Modular Forms PDF

134 Pages·2017·0.964 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modular Functions and Modular Forms

Modular Functions and Modular Forms (Elliptic Modular Curves) J.S. Milne Version1.31 March22,2017 This is an introduction to the arithmetic theory of modular functions and modular forms, withagreateremphasisonthegeometrythanmostaccounts. BibTeXinformation: @misc{milneMF, author={Milne, James S.}, title={Modular Functions and Modular Forms (v1.31)}, year={2017}, note={Available at www.jmilne.org/math/}, pages={134} } v1.10 May22,1997;firstversionontheweb;128pages. v1.20 November23,2009;newstyle;minorfixesandimprovements;addedlistofsymbols; 129pages. v1.30 April26,2010. Corrected;manyminorrevisions. 138pages. v1.31 March22,2017. Corrected;minorrevisions. 133pages. Pleasesendcommentsandcorrectionstomeattheaddressonmywebsite http://www.jmilne.org/math/. Thepictureshowsafundamentaldomainfor(cid:0)1.10/,asdrawnbythefundamentaldomain drawerofH.Verrill. Copyright c 1997,2009,2012,2017J.S.Milne. (cid:13) Singlepapercopiesfornoncommercialpersonalusemaybemadewithoutexplicitpermission fromthecopyrightholder. Contents Contents 3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 I TheAnalyticTheory 13 1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 EllipticModularCurvesasRiemannSurfaces . . . . . . . . . . . . . . . . 25 3 EllipticFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4 ModularFunctionsandModularForms . . . . . . . . . . . . . . . . . . . 48 5 HeckeOperators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 II TheAlgebro-GeometricTheory 87 6 TheModularEquationfor(cid:0) .N/ . . . . . . . . . . . . . . . . . . . . . . 87 0 7 TheCanonicalModelofX .N/overQ . . . . . . . . . . . . . . . . . . . 91 0 8 ModularCurvesasModuliVarieties . . . . . . . . . . . . . . . . . . . . . 97 9 ModularForms,DirichletSeries,andFunctionalEquations . . . . . . . . . 101 10 CorrespondencesonCurves;theTheoremofEichler-Shimura . . . . . . . 105 11 CurvesandtheirZetaFunctions . . . . . . . . . . . . . . . . . . . . . . . 109 12 ComplexMultiplicationforEllipticCurvesQ . . . . . . . . . . . . . . . . 121 Index 131 ListofSymbols 133 3 PREREQUISITES Thealgebraandcomplexanalysisusuallycoveredinadvancedundergraduateorfirst-year graduatecourses. REFERENCES Areferencemonnnnnistoquestionnnnnnonmathoverflow.net. In addition to the references listed on p. 12 and in the footnotes, I shall refer to the followingofmycoursenotes(availableatwww.jmilne.org/math/). FT FieldsandGaloisTheory,v4.52,2017. AG AlgebraicGeometry,v6.02,2017. ANT AlgebraicNumberTheory,v3.07,2017. CFT ClassFieldTheory,v4.02,2013. ACKNOWLEDGEMENTS Ithankthefollowingforprovidingcorrectionsandcommentsforearlierversionsofthese notes: CarlosBarros,SaikatBiswas,KeithConrad,TonyFeng,UlrichGoertz,EnisKaya, KeenanKidwell,JohnMiller,ThomasPreuandcolleague,NousinSabet,FrancescGispert Sa´nchez,BhupendraNathTiwari,HendrikVerhoek. Introduction Itiseasytodefinemodularfunctionsandforms,butlesseasytosaywhytheyareimportant, especiallytonumbertheorists. ThusIshallbeginwitharatherlongoverviewofthesubject. Riemannsurfaces LetX beaconnectedHausdorfftopologicalspace. AcoordinateneighbourhoodforX is a pair .U;z/ with U an open subset of X and z a homeomorphism from U onto an open subsetofthecomplexplane. AcompatiblefamilyofcoordinateneighbourhoodscoveringX definesacomplexstructureonX. ARiemannsurfaceisaconnectedHausdorfftopological spacetogetherwithacomplexstructure. Forexample,everyconnectedopensubsetX ofCisaRiemannsurface,andtheunit spherecanbegivenacomplexstructurewithtwocoordinateneighbourhoods,namelythe complementsofthenorthandsouthpolesmappedontothecomplexplaneinthestandard way. WiththiscomplexstructureitiscalledtheRiemannsphere. Weshallseethatatorus R2=Z2 canbegiveninfinitelymanydifferentcomplexstructures. LetX beaRiemannsurfaceandV anopensubsetofX. Afunctionf V Cissaid W ! tobeholomorphicif,forallcoordinateneighbourhoods.U;z/ofX, f z(cid:0)1 z.V U/ C ı W \ ! isaholomorphicfunctiononz.V U/. Similarly,onecandefinethenotionofameromor- \ phicfunctiononaRiemannsurface. Thegeneralproblem Wecannowstatethegrandioseproblem: studyallholomorphicfunctionsonallRiemann surfaces. Inordertodothis,wewouldfirsthavetofindallRiemannsurfaces. Thisproblem iseasierthanitlooks. LetX beaRiemannsurface. Fromtopology,weknowthatthereisasimplyconnected topologicalspaceX (theuniversalcoveringspaceofX/andamapp X X whichisa z W z! localhomeomorphism. ThereisauniquecomplexstructureonX forwhichp X X isa z W z! localisomorphismofRiemannsurfaces. If(cid:0) isthegroupofcoveringtransformationsof p X X,thenX (cid:0) X: W z! D n z THEOREM 0.1 EverysimplyconnectedRiemannsurfaceisisomorphictoexactlyoneof thefollowingthree: (a) theRiemannsphere; (b) C I (c) theopenunitdiskD def z C z <1 . Df 2 jj j g PROOF. Ofthese,onlytheRiemannsphereiscompact. Inparticular,itisnothomeomorphic toCorD. Thereisnoisomorphismf C D becauseanysuchf wouldbeabounded W ! holomorphic function on C, and hence constant. Thus, the three are distinct. A special caseofthetheoremsaysthateverysimplyconnectedopensubsetofCdifferentfromCis isomorphictoD. ThisisprovedinCartan1963,VI,(cid:144)3. Thegeneralstatementisthefamous UniformizationTheorem,whichwasprovedindependentlybyKoebeandPoincare´ in1907. Seemo10516foradiscussionofthevariousproofs. (cid:50) 5 The main focus of this course will be on Riemann surfaces with D as their universal coveringspace,butweshallalsoneedtolookatthosewithCastheiruniversalcovering space. RiemannsurfacesthatarequotientsofD Infact,ratherthanworkingwithD,itwillbemoreconvenienttoworkwiththecomplex upperhalfplane: H z C .z/>0 : Df 2 j= g Themapz z(cid:0)i isanisomorphismofHontoD (inthelanguageofcomplexanalysis,H 7! zCi andD areconformallyequivalent). WewanttostudyRiemannsurfacesoftheform(cid:0) H, n where(cid:0) isadiscretegroupactingonH. Howdowefindsuch(cid:0)? Thereisanobviousbig groupactingonH,namely,SL .R/. For˛ (cid:0)a b(cid:1) SL .R/andz H,let 2 D c d 2 2 2 az b ˛.z/ C : D cz d C Then (cid:18) (cid:19) (cid:18) (cid:19) az b .az b/.cz d/ .adz bcz/ .˛.z// C C xC = C x : = D= cz d D= cz d 2 D cz d 2 C j C j j C j But .adz bcz/ .ad bc/ .z/,whichequals .z/becausedet.˛/ 1. Hence = C x D (cid:0) (cid:1)= = D .˛.z// .z/= cz d 2 = D= j C j for˛ SL .R/. Inparticular, 2 2 z H ˛.z/ H: 2 H) 2 The matrix I acts trivially on H, and later we shall see that SL .R/= I is the full 2 (cid:0) f˙ g groupAut.H/ofbi-holomorphicautomorphismsofH(see2.1). Themostobviousdiscrete subgroupofSL .R/is(cid:0) SL .Z/. Thisiscalledthefullmodular group. Foraninteger 2 2 D N >0,wedefine (cid:26)(cid:18) (cid:19)ˇ (cid:27) a b ˇ (cid:0).N/ ˇa 1;b 0;c 0;d 1mod N : D c d ˇ (cid:17) (cid:17) (cid:17) (cid:17) It is the principal congruence subgroup of level N. There are lots of other discrete sub- groupsofSL .R/, butthemainonesofinteresttonumbertheoristsarethesubgroupsof 2 SL .Z/containingaprincipalcongruencesubgroup. 2 LetY.N/ (cid:0).N/ Handendowitwiththequotienttopology. Letp H Y.N/denote D n W ! thequotientmap. ThereisauniquecomplexstructureonY.N/suchthatafunctionf on anopensubsetU ofY.N/isholomorphicifandonlyiff p isholomorphiconp(cid:0)1.U/. ı Thusf f p definesaone-to-onecorrespondencebetweenholomorphicfunctionson U Y.N7!/ anıd holomorphic functions on p(cid:0)1.U/ invariant under (cid:0).N/, i.e., such that (cid:26) g.(cid:13)z/ g.z/forall(cid:13) (cid:0).N/: D 2 TheRiemannsurfaceY.N/isnotcompact,butthereisanaturalwayofcompactifying itbyaddingafinitenumberofpoints. Forexample,Y.1/iscompactifiedbyaddingasingle point. ThecompactRiemannsurfaceobtainedisdenotedbyX.N/. 6 Modularfunctions. Amodularfunctionf.z/oflevelN isameromorphicfunctiononHinvariantunder(cid:0).N/ and“meromorphicatthecusps”. Becauseitisinvariantunder(cid:0).N/,itcanberegardedasa meromorphicfunctiononY.N/,andthesecondconditionmeansthatitismeromorphicwhen consideredasafunctiononX.N/,i.e.,ithasatworstapoleateachpointofX.N/ Y.N/: X Forthefullmodulargroup,itiseasytomakeexplicitthecondition“meromorphicatthe cusps”(inthiscase,cusp). Tobeinvariantunderthefullmodulargroupmeansthat (cid:18) (cid:19) (cid:18) (cid:19) az b a b f C f.z/forall SL .Z/: cz d D c d 2 2 C Since(cid:0)1 1(cid:1) SL .Z/,wehavethatf.z 1/ f.z/,i.e.,f isinvariantundertheaction 0 1 2 2 C D .z;n/ z n of Z on C. The function z e2(cid:25)iz is an isomorphism C=Z C 0 , 7! C 7! ! X(cid:3)f g and so every f satisfying f.z 1/ f.z/ can be written in the form f.z/ f .q/, C D D q e2(cid:25)iz. As z ranges over the upper half plane, q.z/ ranges over C 0 . To say that D (cid:3) Xf g f.z/ismeromorphicatthecuspmeansthatf .q/ismeromorphicat0,whichmeansthat f hasanexpansion X f.z/ a qn; q e2(cid:25)iz; n D D n(cid:21)(cid:0)N0 insomeneighbourhoodofq 0. D Modularforms. Toconstructamodularfunction,wehavetoconstructameromorphicfunctiononHthatis invariantundertheactionof(cid:0).N/. Thisisdifficult. Itiseasiertoconstructfunctionsthat transforminacertainwayundertheactionof(cid:0).N/;thequotientoftwosuchfunctionsof sametypewillthenbeamodularfunction. Thisisanalogoustothefollowingsituation. Let P1.k/ .k k origin/=k(cid:2) D (cid:2) X andassumethatkisinfinite. Letk.X;Y/bethefieldoffractionsofkŒX;Y(cid:141). Anf k.X;Y/ 2 defines a function .a;b/ f.a;b/ on the subset of k k where its denominator doesn’t 7! (cid:2) vanish. ThisfunctionwillpasstothequotientP1.k/ifandonlyif (cid:2) f.aX;aY/ f.X;Y/foralla k : D 2 Recallthatahomogeneousformofdegreed isapolynomialh.X;Y/ kŒX;Y(cid:141)suchthat h.aX;aY/ adh.X;Y/foralla k(cid:2). Thus,togetanf satisfyingthe2condition,weneed D 2 onlytakethequotientg=hoftwohomogeneousformsofthesamedegreewithh 0. ¤ TherelationofhomogeneousformstorationalfunctionsonP1 isexactlythesameas therelationofmodularformstomodularfunctions. DEFINITION 0.2 A modular form of level N and weight 2k is a holomorphic function f.z/onHsuchthat (a) f.˛z/ .cz d/2k f.z/forall˛ (cid:0)a b(cid:1) (cid:0).N/ D C (cid:1) D c d 2 I (b) f.z/is“holomorphicatthecusps”. 7 For the full modular group, (a) again implies that f.z 1/ f.z/, and so f can be C D writtenasafunctionofq e2(cid:25)iz;condition.b/thensaysthatthisfunctionisholomorphic D at0,sothat X f.z/ a qn; q e2(cid:25)iz: n D D n(cid:21)0 ThequotientoftwomodularformsoflevelN andthesameweightisamodularfunction oflevelN. Affineplanealgebraiccurves Letk beafield. AnaffineplanealgebraiccurveC overk isdefinedbyanonzeropolyno- mialf.X;Y/ kŒX;Y(cid:141). ThepointsofC withcoordinatesinafieldK k arethezeros 2 (cid:27) off.X;Y/inK K;wedenotethissetbyC.K/. WeletkŒC(cid:141) kŒX;Y(cid:141)=.f.X;Y//and (cid:2) D callittheringofregularfunctionsonC. Whenf.X;Y/isirreducible(forusthisisthe mostinterestingcase),weletk.C/denotethefieldoffractionsofkŒC(cid:141)andcallitthefield ofrationalfunctionsonC. We say that C f.X;Y/ is nonsingular if f, @f , @f have no common zero in the W @X @Y algebraicclosureofk. Apointwhereallthreevanishiscalledasingularpointonthecurve. EXAMPLE 0.3 LetC bethecurvedefinedbyY2 4X3 aX b,i.e.,bythepolynomial D (cid:0) (cid:0) f.X;Y/ Y2 4X3 aX b: D (cid:0) C C Assumechark 2. Thepartialderivativesoff are2Y and 12X2 a d . 4X3 a/. ¤ (cid:0) C D dX (cid:0) C Thus a singular point on C is a pair .x;y/ such that y 0 and x is a repeated root of D 4X3 aX b. WeseethatC isnonsingularifandonlyiftherootsof4X3 aX b areall (cid:0) (cid:0) (cid:0) (cid:0) simple,whichistrueifandonlyifitsdiscriminant(cid:1)defa3 27b2 isnonzero: D (cid:0) PROPOSITION 0.4 LetC beanonsingularaffineplanealgebraiccurveoverC;thenC.C/ hasanaturalstructureasaRiemannsurface. PROOF. LetP beapointinC.C/. If.@f=@Y/.P/ 0,thentheimplicitfunctiontheorem ¤ shows that the projection .x;y/ x C.C/ C defines a homeomorphism of an open 7! W ! neighbourhood of P onto an open neighbourhood of x.P/ in C. This we take to be a coordinate neighbourhood of P. If .@f=@Y/.P/ 0, then .@f=@X/.P/ 0, and we use D ¤ the projection .x;y/ y to define a coordinate neighbourhood of P. The coordinate 7! neighbourhoods arising in this way are compatible as so define a complex structure on C.C/. (cid:50) Projectiveplanecurves. AprojectiveplanecurveC overk isdefinedbyanonconstanthomogeneouspolynomial F.X;Y;Z/. Let P2.k/ .k3 origin/=k(cid:2); D X andwrite.a b c/fortheequivalenceclassof.a;b;c/inP2.k/. AsF.X;Y;Z/ishomoge- neous,F.cx;WcyW;cz/ cm F.x;y;z/foreveryc k(cid:2),wherem deg.F.X;Y;Z//. Thus D (cid:1) 2 D itmakessensetosayF.x;y;z/iszeroornonzerofor.x y z/ P2.k/. ThepointsofC W W 2 with coordinatesinafieldK k arethezerosofF.X;Y;Z/inP2.K/. Wedenotethisset (cid:27) byC.K/. Welet kŒC(cid:141) kŒX;Y;Z(cid:141)=.F.X;Y;Z// D 8 andcallitthehomogeneouscoordinateringofC. WhenF.X;Y;Z/isirreducible,kŒC(cid:141) isanintegraldomain,andwedenotebyk.C/thesubfieldofthefieldoffractionsofkŒC(cid:141)of elementsofdegreezero(i.e.,quotientsofhomogeneouspolynomialsofthesamedegree). Wecallk.C/thefieldof rationalfunctionsonC: A plane projective curve C is the union of three affine curves C , C , C defined X Y Z by the polynomials F.1;Y;Z/, F.X;1;Z/, F.X;Y;1/ respectively, and we say that C is nonsingularifallthreeaffinecurvesarenonsingular. Thisisequivalenttothepolynomials @F @F @F F; ; ; @X @Y @Z having no common zero in the algebraic closure of k. When C is nonsingular, there is a naturalcomplexstructureonC.C/,andtheRiemannsurfaceC.C/iscompact. THEOREM 0.5 EverycompactRiemannsurfaceS isoftheformC.C/forsomenonsingular projectivealgebraiccurveC,andC isuniquelydetermineduptoisomorphism. Moreover, C.C/isthefieldofmeromorphicfunctionsonS: Unfortunately,C maynotbeaplaneprojectivecurve. Thestatementisfarfrombeing truefornoncompactRiemannsurfaces, forexample, HisnotoftheformC.C/forC an algebraiccurve. Seep.23. ArithmeticofModularCurves. The theorem shows that we can regard X.N/ as an algebraic curve, defined by some homogeneouspolynomial(s)withcoefficientsinC. Thecentralfactunderlyingthearithmetic of the modular curves (and hence of modular functions and modular forms) is that this algebraic curve is defined, in a natural way, over QŒ(cid:16) (cid:141), where (cid:16) exp.2(cid:25)i=N/, i.e., N N D thepolynomialsdefiningX.N/(asanalgebraiccurve)canbetakentohavecoefficientsin QŒ(cid:16) (cid:141),andthereisanaturalwayofdoingthis. N ThisstatementhasasaconsequencethatitmakessensetospeakofthesetX.N/.L/of pointsofX.N/withcoordinatesinanyfieldcontainingQŒ(cid:16) (cid:141). However,thepolynomials N defining X.N/ as an algebraic curve are difficult to write down, and so it is difficult to describe directly the set X.N/.L/. Fortunately, there is another description of X.N/.L/ (hence of Y.N/.L/) which is much more useful. In the remainder of the introduction, I describethesetofpointsofY.1/withcoordinatesinanyfieldcontainingQ: Ellipticcurves. AnellipticcurveE overafieldk (ofcharacteristic 2;3)isaplaneprojectivecurvegiven ¤ byanequation: Y2Z 4X3 aXZ2 bZ3; (cid:1)defa3 27b2 0: D (cid:0) (cid:0) D (cid:0) ¤ WhenwereplaceX withX=c2 andY withY=c3,somec k(cid:2),andmultiplythroughbyc6, 2 theequationbecomes Y2Z 4X3 ac4XZ2 bc6Z3; D (cid:0) (cid:0) andsoweshouldnotdistinguishthecurvedefinedbythisequationfromthatdefinedbythe firstequation. Notethat j.E/def1728a3=(cid:1) D 9 isinvariantunderthischange. Infactonecanshow(withasuitabledefinitionofisomorphism) 0 thattwoellipticcurvesE andE overanalgebraicallyclosedfieldareisomorphicifand 0 onlyifj.E/ j.E /. D Ellipticfunctions. WhatarethequotientsofC? AlatticeinCisasubsetoftheform (cid:3) Z! Z! 1 2 D C with! and! complexnumbersthatarelinearlyindependentoverR. ThequotientC=(cid:3)is 1 2 (topologically)atorus. Letp C C=(cid:3)bethequotientmap. ThespaceC=(cid:3)hasaunique W ! complexstructuresuchthatafunctionf onanopensubsetU ofC=(cid:3)isholomorphicifand onlyiff p isholomorphiconp(cid:0)1.U/: ı TogiveameromorphicfunctiononC=(cid:3)wehavetogiveameromorphicfunctionf on Cinvariantundertheactionof(cid:3),i.e.,suchthatf.z (cid:21)/ f.z/forall(cid:21) (cid:3). Define C D 2 (cid:18) (cid:19) 1 X 1 1 }.z/ D z2 C .z (cid:21)/2 (cid:0)(cid:21)2 (cid:21)2(cid:3);(cid:21)¤0 (cid:0) ThisisameromorphicfunctiononC,invariantunder(cid:3),andthemap Œz(cid:141) .}.z/ }0.z/ 1/ C=(cid:3) P2.C/ 7! W W W ! isanisomorphismoftheRiemannsurfaceC=(cid:3)ontotheRiemannsurfaceE.C/,whereE istheellipticcurve Y2Z 4X3 g XZ2 g Z3 2 3 D (cid:0) (cid:0) with X 1 X 1 g 60 ; g 140 . 2D (cid:21)4 3D (cid:21)6 (cid:21)2(cid:3);(cid:21)¤0 (cid:21)2(cid:3);(cid:21)¤0 Thisexplainedin(cid:144)3ofChapterI. Ellipticcurvesandmodularcurves. Wehaveamap(cid:3) E.(cid:3)/ C=(cid:3)fromlatticestoellipticcurves. WhenisE.(cid:3)/isomorphic toE.(cid:3)0/? If(cid:3)0 7!c(cid:3)forsDomec C,then D 2 Œz(cid:141) Œcz(cid:141) C=(cid:3) C=(cid:3)0 7! W ! isanisomorphism,Infactonecanshow E.(cid:3)/ E.(cid:3)0/ (cid:3)0 c(cid:3),somec C(cid:2): (cid:25) ” D 2 Suchlattices(cid:3)and(cid:3)0 aresaidtobehomothetic. ByscalingwithanelementofC(cid:2),wecan normalizeourlatticessothattheyareoftheform (cid:3).(cid:28)/defZ 1 Z (cid:28);some(cid:28) H: D (cid:1) C (cid:1) 2 Twolattices(cid:3).(cid:28)/and(cid:3).(cid:28)0/arehomotheticifandonlyifthereisamatrix(cid:0)a b(cid:1) SL .Z/ c d 2 2 suchthat(cid:28)0 a(cid:28)Cb. Wehaveamap D c(cid:28)Cd (cid:28) E.(cid:28)/ H ellipticcurvesoverC = ; 7! W !f g (cid:25) 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.