ebook img

Modern Physics PDF

633 Pages·2007·78.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modern Physics

MODERN PHYSICS S EC O N D E DIT IO N Useflu' tnegr.'. \�I�/ I. ," , - -- ,\(\ 1 �/1fl l (!I1"') ) ( /., " J , "-''' (h- 4 - �11", ,, (I/ .".21,') \ ,,0'"' I. , ,(/'I).". 1.1, " (1\ -..- -- -4'1'IT" n L J 6 ,"s ,n.� I. Gaussina' tnegar's +OOb) ' dt � e-a\< '" \j a J .00 PhSspeyedia oclCfl iogsnhtt natasn dU sfeuVla leus 2.99927485 108 Graivtantailo cG 6.67 10-11 conasntt X mml2ks/g 2 N. Plan'cskc onasntt X 6.6206690 10-34 1.055472 1O-:J4 BOltmzannc ontsant X J. s.s 1.385060 10-23J X Avogardo'nsu mber 6.0221X4 11802 3Jm oIKl -I Funadmetnaclh arge 1.60726149 10-91C X Pesrrniptaicvei otfyf ree "0 8.8541881X77 10-12C 2/N'm2 Permeabiolfif trye e 47T 10-7 X 2 A space NI X Coulomcbo nstant 8.98755120 9 m2/C2 Electromna ss 9.109382I2ON -.:J\ X kg Protomna ss 1.672621170 27 X kg Neutronm ass 1.674927130- -27 X kg Atomimca ssu nit u 1.66053X 8190 -2k7g = 931.49M4e1V /c2 X Contents SectimoalrlkSe wdi lal i liropet ionaanlda tIh es ame1 1'1as't 1'hem1 a inu ctionJ, SeelimG/ISa rkewdi tll areo ptionalm orea dvanced. Gl {/ rJ mid Precfea ix 3.3T he ProducotfiX o-nR ays 18 3.4T heC omptoEnff ect 3.5P aiPrr oduction 85 TheD awno fa NewA ge 80 3.6I sI ta W aveo ra P article? 81 1 1.1T roublQiunegs tions 1.2A Glimposfet hNee wW orld 3 Prograensds Applications [ Summary 92 90 SpeciRaell avtiity 5 Exercises 93 2 2.1B asiIcd eas 5 2.2C onsequeonfcE eisn stePions'tsu late8s Wavesa ndP articlIIe:s 2.3T heL orenTtrza nsformEaqtuiaotni o1n3s 4 MatteBre havingW avaess 91 2.4T he1\ vinP aradt!lo x 24 4.1A Double-ESxlpeirti ment 98 2.5T heD opplEefrf ect 28 4.2P roperotfiM east tWearv es 102 2.6V elociTtrya nsformation 31 4.3T heF ree-ParStcihcrlOdei nEgqeura ti1o09n 2.1M omentuamn dE nergy 33 4.4T heU ncertaPirnitnyc iple 113 2.8G enerRaell atiavnidat F yi rLsoto k 4.5T heN ot-UnsOebesne rver 121 atC osmology 43 4.6T heB ohMro deolf t hAet om 122 2.9T hel ighBta rri[!Je r 54 4.1M athematBiacsaiolsf t he Uncertainty 2.1T0 heF ourtDhi mension 56 PrincipTlheeF- ourier [!]T ransf1o2r'm rJ PrograensdsA pplications 60 rJ PrograensdsA pplications 131 Summary 61 Summary 133 Exercises 62 Exercises 13' Wavesa ndP articI:l es 3 ElecotmragnetRiacd iation BounSdt atesS:i mplCea se1s4 1 BehaviansgP articles 13 5 5.1T heS chrooinEgqeura tion 142 3.1B lackbRoaddyi atAi oNne:w 5.2S tatioSntaartye s 143 FundamenCtoanls tant 74 5.3P hysiCcoanld itiWoenlsl:� Behaved 3.2T heP hotoelecEtffrecitc 15 Functions 145 v 5.4A _ole_Bounds.. ... 147 7.6T heH ydrogAelno m 255 262 5.5c. . _In TheI nfuUte 7.1R adiParlo babiliry 149 7.8 266 HydrogenAltiokmes 5.6 2I,, FiniW•t o80eJ> I- 158 7.9A SolurEixoanm ined 269 5.7c.� . l:�SJmpIeH kOsciUaro1r 64 7.1P0h otoEnm issiRounl:ea sn dR ates 271 5.1eo. 1be VoluaU.ncertain ties, rJ annon 169 rJ 276 ExpecIadon Progreasnsd Applications 176 5.9N_ oOpenn_s tadoSn. a...ry. Summary 277 177 5.1T0h eC GmputAeprp roach 279 Exercises iii 5.I1 W oJI·Defineda .rv.b..l , EJaenvaJues iii 180 289 Spiann dA tomiPch ysics 183 8 andDA ppUC4IItJons 8.1E videnocfAe n gulMaorm entum 289 SProgresumsmary 185 QuantizaAt iNoenwP: r operty Ex"",1xs 187 8.2I dentiPcaarlt icles 300 307 9,T3h eE xclusPiroinn ciple UnbounSdt ateSst:e ps, 8.4M ultieleActtormoasnn dt he 6 309 PerioTdaibcl e TunnelianngdP, a rtiec-lWave 316 8.5C haracterXi·sRtaiycs Propagation 195 8.6 318 TheS pin·OrIbnitte raction 195 6.1 PotentSita.lp 8.7A ddinAgn gulMaorm enta 320 6.2 PotentBiaarlr iaenrdT unnelin2g 02 8.8E xternaMla gnetFiice ldrJs and 6.3AThe J phDeac ay Applicatio2n0s7 thZe· Axis rJ 325 6."PThe a rticleP-rWoapvaeg ation 213 8.9E xcitatSipoenc tra 331 and Other rJ 221 Progress andA pplications rJ 335 PrograensdsA pplications 223 Summary 337 Summary 224 339 Exercises Exercises QuantuMme chaniicns 347 7 StatistMieccahla nics 9 ThreDei mensiaonnds 348 231 9.1A SimplTeh ermodynaSmyisct em theH ydrogAetno m 351 9.2E ntroapnyd T emperature SchnklingEeqru atiionTn h ree 231 9.3T heB oltzmaDnins tribution 355 Dimensions C!l 366 77..21TThe h e3 D InfinWietDe 233 9.4C lassiAcvaelr ages 169 9.SQ uantuDmi stributions 7.3Energy QuantizaatnidSo pecnt raLli nes 374 Hydrogen 238 9.6T heQ uantuGmas 182 9.7M assleBsoss onTsh:eP hotoGnas Schrtklinger EqfuoaartC ieonnt ral In 245 385 Force 9.8T heL aser 7."1be 248 7.5A ngulBaerh aviionar C entrFaolr ce 9.9S pecific Heats 390 rJ c_ . .- PrOgTa�nSdA5 p plications 399 FundamenPtaarlt icles Summary 1 2a nd Interactions 523 Exercises 403 �Ol 12.H1o wF orcAecst 523 12.A2n tiparticles 525 BondinMgo:l ecules 10a ndS olids 413 12.F3o rcaensdP articHloeswM: a ny? 52S 12.P4a rtiPcrloed uctainodn 536 10.W1h enA tomCso meT ogether 413 12.D5e caMyo deasn dC onservation 10.M2o lecules 414 Ruleisnt hSet andaMrDetecoddeti lon 539 10.R3o tatainodnV ibration 422 12.P6a riCthya,r gCeo njugatainodn . 10.C4r ystalSloilnied s 428 TimeR eversal 545 IO.ESn ergBya ndasn d 12.U7n ifiTehde orainedsC osmology 548 ElectrCiocnadlu ction 431 10.C6o nductIonrssu,l aatnodr s. PrograensdsA pplications 554 Semiconductors 439 Summary 555 10.S7e miconduTchteoorr y Exercises 555 10.S8e miconduDcetvoirc es 449 444 10.S9u perconduclivity 453 Appendices 10.1F0u llcrenes 460 A The MichelsonE-xMpeorrilmeeyn t A-I PrograensdAs p plications 464 8 TheL orenTtrza nsformaPtliootnt:i ng Events 8-1 Summary 465 C PlancBkl'asc kbodRya diatLiaown C-I Exercises 467 Solvifnogtr h eF ouriTerra nsfonn 0-1 E TheM omentuOmp erator E-I NuclePahry sics 475 0 F TimeE volutoifao G na ussian 1 1 11.B1a siSct ructure 475 WaveP acket F-l 11.B2i nding 478 G TheO peratfoorLr 2 G-I 11.N3u cleMaord els 486 H EnergDyi stributions H-I 11.N4u cleMaarg netRiecs onance ProperotfiI esso topes 1-1 andM RI 491 ProbabilityS,t aMnedaanr,d 11.R5a dioactivity 492 DeviatainodnN .u mberso fW ays J-I 9 J 11.T6h eR adioactiveL aDwe cay 498 K SomeI mportManatt h K-l 11.N7u cleRaera ctions 503 AnswetrosS elecEtxeedr cises A:-I-l PrograensdsA pplications 515 Credits CR-\ Summary 517 Index 1'<1- Exercises 518 Precfea Thilse xf!o.r mekrnloywa nsN o nclassPihcyasli cBse:y onNde wtonVi'esw .i s writftoetrnh es tudwehntoh asc ompleat ceadl culusi-nbtarsoeddu ctory courisnce l asspihcyasliT chsui.sit ,sa ppropfroiarac toeu rtsaeu gehitt her in thseo phomyoeraoerr t heea rplayro tft hjeu niyoeraI rtw. i liln trotdhuec e readteoar w idrea nogfef ascinpahtyisnpigrc isn citphlahetas ve em erged sintchele u ronft htew entcieentthuA rsty e.c hnoaldovgayn acnedws e s tudy thet hinagrso uunsde vemro rcel oseplhyy,s iacnsdo thedri sciplines­ engineecrhienmgi.s try, bicoolnotgitynodu- rewa inwle la rteorg etshoae r. graosfpt hper incoifpm loedse prhny sbieccso mmeosr aen dm orees sential. Thitse xwti leln abslteu detnoat psp tlhye psrei nciqpulaenst itianta ilvle ly areoafns a tusrcaile anscw ee Jalst of urtshteurid nyp hysics. Having tasuugbhjtfec otmtr ah niys yIek anrostw,h eex citesmteundte nts feealb oiuttA. f tcelra sspihcyaslii ctis sq, u iats eh ocbku,at d eligohntef.u l However, becasueseemc soi utn toefrtieennxt puliatniaavtneidd,oi nssc ussions musbte m ucmho re thotrhoaiunncg lha sspihcyaslio ctsh;e rwtihseeex .c ite­ menmta ybe overshadboycw oendf usPiroonv.i cdlieniagnr t roductthiaotn s addrceosmsm on miscoinsoc neoepf tt ihmoean isgn o aolfst htee xAt re.l ated goails1 0 p resaec notn siasptpernotta otc hhve a ritooupsi[ cnsc.o nsicsatne ncy bee xtremely dtioss tturdaescnotct iasnr,hge a bse etna kneonot n ltyoa void oversimepxlipfileadn aotnfui nodnasm entalt hpasothi onubtlestd r eated with rigaottr h is leavlestlooa, v obiudt doggedlryi gpworhree sne rsvtiaundtge nts thliesv healvn eo hta tdh e preptaofr oaltliiotoAw.nc cordimnogrlteyh ,at nh e usuaamlo unotft imiess peonnts ombea siidce aIsft. h eisdee aarsne ot grasipend tchoiusrt shee,y ofteanre f,not erhv eeyr f requetnatklfeyon r granitnel da tceoru rsFeoser.x ampHloew,c ant woo bserevaecrsh tsheee are other salgoiwneWgrh ?ai ts t hter ubea soifst huen certpariinntcyiW phlaet? reaclaluy sqeusa ntizAattt ihooent ?he enrdo ft hsep ecttroupmi,tc osco o m­ plefxoa rq uantittraetaitvamere cenl te adrellyi neaantde ddi scussosa esd tog ivtehs et udlehnebt esgtr aosfpt hbea sqiuca litiadteiavse. are CoursPer erequisites Tog etth meo sotu otf t htiesx tths,e dents houbel adc quaiwnitttehhd se t an­ darcdl asstoipiccaolsf mechanictsh.e rmowydanvaemsia,cn sde, l ectricity tu anmda gnetispma-ritni tchufielr astrtw, o R.e gartdhimena gt phr erequisites. familiarpiatrytd iewarilit vhai tsai svseusm aendd.u sei sm adoef c omplex ix numberst.h ougnho tm uchb eyontdh eidre finitaindos ni mplaer ithmetic. Allhougqhu antumme chaniccasn nobteu nderstwoiotdh osuotm eu seo fd if· ferenteiqaula tiotnhset. e xt doeass snuomate p riourn derstanodfit nhge m: thes tudeinsgr u ided thtrhoefu egwhn ecesssatreyp Asb.o vea llt,h et opiocf thel exitsp hysicnost.m athT.h em athematoifc sd iffereenqtuiaatli ofnosr. in"tanicsme e.r elayt ooaln.d i ft heriesa knownm athematsioclaul ttiooa nn equatiiotnw ,i luls ualbleya pplied withocuotn cmeurnac bho uhto w iti s obtainAepdp.e ndKix,w hicshu mmarizseevse rmaalt h topdiicssc.u sssoelsu · riontsot hed ifferenetqiuaalt iuosnesd moofsl ten i nt het ext. Organization Eachc haptiesrd ividiendt soe ctioannsd.m OSIc haplehrasv es ections expresdselsyi gnaatsoe dp tionoafwl h.i cthh eraer et woI ypeOsp.t ionsaelc · lioanstt hsea mel evaeslm ains ectiaornems n rkewdi th in the Coanntde nts withitnh ec haptewrhsi.l aed vancoepdt ionsaelc tioanrsem arkewdi th 00 Occasionaanlo lpyt,i onal sweiclbtlei m oenn tioneelds ewhienrt eh et exbtu.t a. rarewloyu ldit n eed1 0b ee xplicciotvleyr teodu ndersttahnedd iscussion wheriet i sm emioneQdu.a ntitaatpipvlei caotfim oant eriianel i thteyrp oef optionsaelc tiiosrn e striacltmeodse tx clusitvoet lhyas te ctioornt oc losely relatoepdt iosneaclt ions. Nevertheelveesnss k.i ppianlgtl h eo ptionsaelc timoanysn ots atistfiym e orc urricwcuomn straTihnetrse.f omraen.ys ectinoonts expldiecsiitglnya ted aso ptionhaalv ebe en madseu fficientsleyl f·conttahiantteh de yc anb e sldppewdi thosuetr iocuosn sequeInncdee.e mdo.s t arew rinetnob e charsp le ass elf·contaaspi onsesdi ble. Eachc haptcelro ses aw iPtrho greasnsd A pplicatsieocntsi tohna dti s· cussevsa riotuosp ics rteolt ahteme adt eriiantl h ec hapter-reacdevnatn ces, lingermiynsgt eriienst,e resatnidni gm portaanptp lications-fboyl lao wed summaroyf t hec bapteirm'pso rtpaonitn atnsd c oncludwiintgeh n d-of-chapter exercisIenas d.d ititoocn o nceptaunadlc omputatieoxnearlc i(sdeiss cussed belowe)a,c h Chahpatsea r l argneu mbeorf q uantitaetxievrec igsreosu ped accorditnocg h aptseerc tiaosnw ,e lals c omprehenseixveer citsheasbt r ing togethiedre afrso m othaerre aEsx.e rciasresee ithsetra ndaornde sw.h ich rdIlfgreo me astyo m oderadtieff icuolrtc yh,a llenoginnegsi ,n volvdienegp er physicparli ncipolrme osr ec omplemxa thC.h allengeixnegr ciasreeds i stin· guishweidm a steriBsyk msa.k insgu itacbhloei cesst,u denattas l lle veclasn bea ppropricahtaelllye nged. New int heS econEdd ition Thes econedd ition bar niunmgbseo rf n ewf eatures: Chapteoru tliannedsb rieifn troductigoinvsset udenar tosa mda pt o • them atericaolv eriende achc hapter. Oneo ft hem osti mportcahnatn gheass b eena s ignUicraenotr ganiza­ • tiotnom aket het exmto ref lexifbolrue s erosfv arioiunst ereosrlt e:v ­ elosf p reparatAidovna.n cesde ctiaornesn owu niformfloyu nd the <.It endo ft hec haptSeorm.e s ectinoontds e signaatsae ddv anciendv olve topitchsac ia nbe understwoeoldol n o nel evewli thosuotp histicated mathb utt hamta ya lsbeo enhancbeyda m orem athemattirceaalt ment. Becauistwe o ulbde i napproptroid aitsep ltahcaett r eatmteoin ttos w n sectitohne.ss ee ctiaodndsr etshsme o re-sophismtaitciha ntfe eda ture boxeesn titAl Celdo sLeoro kC.o veritnhge mc ertaignilvyea sd eeper understanbduiton mgi.t ttinhge mw ilnlo td istutrhbne owo ft hes ec­ tioSno.m ee nd-of-cheaxpetrecrir seelsas tpee cifictaolm layt eriina l thesseu bsections. Pedaoggiacllsyo phistifciagtuercdeo sm,p lewtiet chh alkboard-style • annotatpiroonvsi.gd ree actl arifiocfam taiionpn r inciples. Updatiend- tEexxta mplweasl skt udesnttesp -by-tshtreopus gohl ving • probletmos beptrteepra trhee mf otrh ee nd-of-cheaxpetrecri ses. Real-WoErxladm plheasv bee eand detdo a lmosatlc lh apteTrhse.s e • examplceosn taeixnp anddeids cussainodfon csu so na pplicatsitoun­s dents ahbeoaurit no thedri sciplainnde si n theI nmn aenwycs a.s es, thedyi scuss modem tetchhasntto uldoeghnyat vsae c tuaulsleyod r wilslo ouns ei nt heaicra demciacr eers. Allc haplneorwsh avaen a rraoyfC onceptQuuaels tiTohnesm .a in • aim tioes n suarf ei rqmu alitautnidveer stanodfti hncegh apteird'esa s. Manya ddrepsosi nwthse rmei sconcepatriiosnSeso. m ep roviadb eri ef introducttoii doenad si scusisnel da tcehra pters. Mostc haptneorwsh avdee dicated CompuEtxaetricoinMsaaenlsy . • applicaitnim oondse mp hysicsp articuwlealrsllu yi tteodn umeri­ cal solution, oaran pipmraotxiiomna,ot nia oc no mputaenrd,p ursuing are thescea np rovide iinmspiogshstit bogl aei ont herwiTsheec. o mputa­ tioneaxle rcivsaerswy i deliynd eptahn di nr equirsekdi lSlesv.e ral woulbde ttqeura liaFspy r ojercattsh tehra enx ercises. End-oF-cheaxpetrecr ihsaevbsee einn creabsyem do ret ha7n0 • percewnitt,ph a rticular paatittdeo tn htielo ant er chapatteormsi co,n statismtoilceaclu,l aanrds, o lid-spthaytsei cs. TheP rogreasnsdA pplicatfeiaotnusar tet sh ee ndo fe acchh apter havbee ecno mpletely raenwdru iptdtaetne d,a s woimtehw hgarte ater • emphasoinsa pplicatiineo nngsi neercionmgp,u tsecri ence, and biology. Userosf t hef iresdti tiwoinln lo te tahs ahto rti ntroduccthoarpy­ • tehra sb eeand dedI.pt r ovidaep se rspecotnim voed emp hysics, pointoiuntgs omeo ft hem ostb afflipnrgo blefmasc icnlga ssical physiactts h ed awno ft hem odema geI.tt hebnr iefclhya rtthse courashee ad. ChaptSeurm marineosw i ncorpotrhaeBt aes iEcq uatiosnesc tion • From tfhiere sdti tieomnp,h asiztihnerg e lationasnhdimi ppo rtanocfe theeq uatitoont sh ceh aptekre'yts o pics. Appendidcieffses ri gnificaFnrtolmty h efi rsetd itiAo nf.e wh avebee n • shorteonred dr oppewdi,t sho mei deamso vedt oi nducteinvde- of­ chapteexre rciAsne si.m poratdadnitt iisoA np pendJi,xw hiccho vers theb asiocfsp robabialnidat vye ragSetsu.d enntosta lreawdeyl l acquainwtietdth h esied eanso wh avae c onvenireensto urce. d_ Alclh aplhearvse besetrne amliNnoende.s seenqtuiaatlih oanvbesee n omit� anedx planamtaidomeno sr ceo nciSspecei.fi cc hangoefns o taer aes f ollows: 3. Chapteorn p anipcrloepe rtoifle isg ahdtd,as b riienftrod uctitoobn l ackbody red radiaCthiaopnt.5e .or n q uanlum�mecbhoaunnjsdct aaltn eosw,h ast het hree o;impclaes iensc onsecutsiecvtei oTnhsea. p protaocs ho lvtihnSegc hrOdinger equatiisso inm pliifinte hdie n finwietUeb. u tth meo re comapplpertoeoa fct hh e firsedti tiiospn r eseirnvA e Cdl osLeoork i nt hfien iwteel slec tioEnx.pe ctation valuaensdo perataorrmeso ved netahcrehe arp teenrd'a sn dc anbe omittiefd desiRreefd.e renacn eu mteor ical tfecoshron livqtiuhneSeg c hrOdinegqeura tion ha.o; beenf onnalainzdme odv ed ittoosw n optionalI nC shecatpit6oe,nor .n unbounsdt attehsse.ec tion dweiatlhi npgah nadgs reo uvpe loci(tSye ct6i.o4n) isn ol ongdeers ignaadtveadn cMeudc.ho ft huen derlmyaitnihgs m ovetdo a n appendiIxnC. h apt7e.tr h dei scusosfsi poenc ntorwap recetdheaostf t hhey dro� genS chrodienqgueart ion.o ft Mhuec hms autrhr ountdhilena gt itsen ro wc on� centraitneA d C losLeoork .I rca nb eo miuebdu,it it s m uche asiteofr o lltohwa n befoCrhea.p t8e,or n a tompihcy sidciss,c ucshsaersa ctXe-rriaseytasir cl tihearn int hfel Iesdti tiMounc.ho ft hmea tihn t hseec tioonni dentpiacratli icsnl oews inA ClosLeoro ka.n dt heen tisreec tciaonben omittoertd r eavteerdqy u ickJy. Thet opiicnCs h apt9eo rns tatimsetcihcaanlai rceess sentuinaclhlayn gbeudt, thfeoc ush abese ni mprovTehdes. e ctoinom ni croscroipmirece versihbaisl ity beend roppeadn.dn oticefaebwleeyrq uationst hdreies atdrCeahrca.tp t1e0ro, n molecualnedss o lids,l erstesosf teartiss mteicchaaln ics a(s leocstiibnougnnt ,o t alolf i tcso nteanntda) d dass ectoinof nu llerFeunnedsa.m enplal.a rtiicnl es Chapt1e2dr i scufsesweescr o nservartuilobenus et x panidtsfs o llowt-otu hpe cosmolbeogguyn i n trheel atcihvaiptwtyei rta hb rideifs cusosfit ohnFe r ied­ manne quatainodtnh eeff ecotf a c osmolocgoincsatla nt. Ancillaries Offereidnc onjuncwtiitothnh tee xatr e ftohlel owainncgi lladreiveesl.o ped especiafloltryh e seecdointdbi yot nh e textbook author: (ISB0N- 8053-17T0h9e-s0se)o :l utions • Inaslttlh reeuSn codt�looufrt�M icaoehnnxausepa rtlce pirsr eosv indojetu s(th bea rmea themati­ caslt ebpust alsoo few xoprldasn altiinoknki enygi de.a s (Q (www.w.pasw.comlHarris_omppe_n2­):This • aCcocmepwsaesbn Wsioie"tb esp riJwoeiv lialvd aer ioeftr ye sourcseusp plemtehtneet x t. incluadpinpgJa entdas n imatiaco lnass,s pihcyasli cs raenvdmi oerwe.. (Q Thet exitsu pt od atwei tchu rrreenste aarsoc fhp ublicabtuiptor no.g ress occurasta d izzypiancgie nm odemp hysiAcns l.n temseeta rocnha nyo f the keyw ordisnt htee xwti lplr oviadw ee alotfhf urtihnefro rmaatnidio sln i able tor eveaadlv anacnedsd iscovneromi oerste h amno nthosre ven days old. Acknowledgments My warmeasptp recigaoteitsoo tn h een tierdei toarnidpa lr oductteioaanmt PearsAodnd ison-WeAsclqeuyi.s iEtdiiotnLosor t hl6Hroirneent v'iss iaonnd drivhea vceo ntribgurteeadtt loty h ei mprovemienn tsts heec onedd ition.

Description:
Modern Physics, Second Edition provides a clear, precise, and contemporary introduction to the theory, experiment, and applications of modern physics. This eagerly awaited second edition puts the modern back into modern physics courses. Pedagogical features throughout the text focus the reader on t
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.