Edited by Jan-Erling Ba¨ckvall Modern Oxidation Methods Related Titles Mizuno, N.(ed.) Modern Heterogeneous Oxidation Catalysis Design,ReactionsandCharacterization 356pageswith134figuresand38tables 2009 Hardcover ISBN:978-3-527-31859-9 Andersson, P.G.,Munslow,I.J. (eds.) Modern Reduction Methods 522pageswith593figuresand66tables 2008 Hardcover ISBN:978-3-527-31862-9 Schmid, R.D., Urlacher,V. (eds.) Modern Biooxidation Enzymes,ReactionsandApplications 318pageswithapprox.70figuresandapprox.20tables 2007 Hardcover ISBN:978-3-527-31507-9 Hynes, J.T.,Klinman, J. P., Limbach, H.-H., Schowen,R. L.(eds.) Hydrogen-Transfer Reactions 1603pagesin4volumeswith539figuresand69tables 2007 Hardcover ISBN:978-3-527-30777-7 de Vries, J.G.,Elsevier,C. J.(eds.) The Handbook of Homogeneous Hydrogenation 1641pagesin3volumeswith422figuresand254tables 2007 Hardcover ISBN:978-3-527-31161-3 Edited by Jan-Erling Bäckvall Modern Oxidation Methods 2nd completely revised and enlarged edition TheEditor AllbookspublishedbyWiley-VCHarecarefully produced.Nevertheless,authors,editors,and Prof.Dr.Jan-ErlingBäckvall publisherdonotwarranttheinformationcontained StockholmUniversity inthesebooks,includingthisbook,tobefreeof DepartmentofOrganicChem. errors.Readersareadvisedtokeepinmindthat ArrheniusLab. statements,data,illustrations,proceduraldetailsor 10691Stockholm otheritemsmayinadvertentlybeinaccurate. Schweden LibraryofCongressCardNo.: appliedfor BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailablefromthe BritishLibrary. Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhis publicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableonthe Internetathttp://dnb.d-nb.de. #2010Wiley-VCHVerlag&Co.KGaA, Boschstr.12,69469Weinheim,Germany Allrightsreserved(includingthoseoftranslationinto otherlanguages).Nopartofthisbookmaybe reproducedinanyform–byphotoprinting, microfilm,oranyothermeans–nortransmittedor translatedintoamachinelanguagewithoutwritten permissionfromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhennot specificallymarkedassuch,arenottobeconsidered unprotectedbylaw. CoverDesign AdamDesign,Weinheim Typesetting ThomsonDigital,Noida,India PrintingandBinding betz-druckGmbH,Darmstadt PrintedintheFederalRepublicofGermany Printedonacid-freepaper ISBN:978-3-527-32320-3 V Contents Preface XI List of Contributors XIII 1 RecentDevelopmentsinMetal-catalyzedDihydroxylationofAlkenes 1 ManKinTse,KristinSchröder,andMatthiasBeller 1.1 Introduction 1 1.2 EnvironmentallyFriendlyTerminalOxidants 3 1.2.1 HydrogenPeroxide 3 1.2.2 Hypochlorite 5 1.2.3 Chlorite 8 1.2.4 OxygenorAir 9 1.3 SupportedOsmiumCatalyst 16 1.3.1 Nitrogen-groupDonatingSupport 16 1.3.2 MicroencapsulatedOsO 17 4 1.3.3 SupportsBearingAlkenes 19 1.3.4 ImmobilizationbyIonicInteraction 21 1.4 IonicLiquid 22 1.5 RutheniumCatalysts 23 1.6 IronCatalysts 26 1.7 Conclusions 32 References 32 2 TransitionMetal-CatalyzedEpoxidationofAlkenes 37 HansAdolfsson 2.1 Introduction 37 2.2 ChoiceofOxidantforSelectiveEpoxidation 38 2.3 EpoxidationsofAlkenesCatalyzedbyEarlyTransitionMetals 39 2.4 MolybdenumandTungsten-CatalyzedEpoxidations 42 2.4.1 HomogeneousCatalysts–HydrogenPeroxideastheTerminal Oxidant 42 2.4.2 HeterogeneousCatalysts 46 2.5 Manganese-CatalyzedEpoxidations 47 ModernOxidationMethods.EditedbyJan-ErlingBäckvall Copyright(cid:1)2010WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim ISBN:978-3-527-32320-3 VI Contents 2.6 Rhenium-CatalyzedEpoxidations 52 2.6.1 MTOasEpoxidationCatalyst–OriginalFindings 54 2.6.2 TheInfluenceofHeterocyclicAdditives 55 2.6.3 TheRoleoftheAdditive 58 2.6.4 OtherOxidants 59 2.6.5 Solvents/Media 61 2.6.6 SolidSupport 63 2.6.7 AsymmetricEpoxidationsUsingMTO 64 2.7 Iron-CatalyzedEpoxidations 64 2.7.1 Iron-CatalyzedAsymmetricEpoxidations 72 2.8 Ruthenium-CatalyzedEpoxidations 74 2.9 EpoxidationsUsingLateTransitionMetals 76 2.10 ConcludingRemarks 79 References 80 3 OrganocatalyticOxidation.Ketone-CatalyzedAsymmetricEpoxidation ofAlkenesandSyntheticApplications 85 YianShi 3.1 Introduction 85 3.2 CatalystDevelopment 86 3.3 SyntheticApplications 98 3.4 Conclusion 109 References 109 4 CatalyticOxidationswithHydrogenPeroxideinFluorinated AlcoholSolvents 117 AlbrechtBerkessel 4.1 Introduction 117 4.2 PropertiesofFluorinatedAlcohols 118 4.2.1 ADetailedLookattheHydrogenBondDonorFeaturesofHFIP 120 4.3 EpoxidationofAlkenesinFluorinatedAlcoholSolvents 123 4.3.1 AlkeneEpoxidationwithHydrogenPeroxide–intheAbsence ofFurtherCatalysts 123 4.3.1.1 OntheMechanismofEpoxidationCatalysisbyFluorinated Alcohols 123 4.3.2 AlkeneEpoxidationwithHydrogenPeroxide–inthePresence ofFurtherCatalysts 129 4.3.2.1 ArsinesandArsineOxidesasCatalysts 129 4.3.2.2 ArsonicAcidsasCatalysts 130 4.3.2.3 Diselenides/SeleninicAcidsasCatalysts 132 4.3.2.4 RheniumCompoundsasCatalysts 133 4.3.2.5 FluoroketonesasCatalysts 135 4.4 SulfoxidationofThioethersinFluorinatedAlcoholSolvents 136 4.5 Baeyer-VilligerOxidationofKetonesinFluorinated AlcoholSolvents 136 Contents VII 4.5.1 Acid-CatalyzedBaeyer-VilligerOxidationofKetonesinFluorinated AlcoholSolvents–Mechanism 139 4.5.2 Baeyer-VilligerOxidationofKetonesinFluorinatedAlcohol Solvents–CatalysisbyArsonicandSeleninicAcids 141 4.6 Epilog 142 References 143 5 ModernOxidationofAlcoholsusingEnvironmentally BenignOxidants 147 IsabelW.C.E.ArendsandRogerA.Sheldon 5.1 Introduction 147 5.2 OxoammoniumbasedOxidationofAlcohols–TEMPOasCatalyst 147 5.3 Metal-MediatedOxidationofAlcohols–Mechanism 151 5.4 Ruthenium-CatalyzedOxidationswithO2 153 5.5 Palladium-CatalyzedOxidationswithO2 163 5.5.1 GoldNanoparticlesasCatalysts 169 5.6 Copper-CatalyzedOxidationswithO2 170 5.7 OtherMetalsasCatalystsforOxidationwithO2 174 5.8 CatalyticOxidationofAlcoholswithHydrogenPeroxide 176 5.8.1 BiocatalyticOxidationofAlcohols 179 5.9 ConcludingRemarks 180 References 180 6 AerobicOxidationsandRelatedReactionsCatalyzedby N-Hydroxyphthalimide 187 YasutakaIshii,SatoshiSakaguchi,andYasushiObora 6.1 Introduction 187 6.2 NHPI-CatalyzedAerobicOxidation 188 6.2.1 AlkaneOxidationswithDioxygen 188 6.2.2 OxidationofAlkylarenes 193 6.2.2.1 SynthesisofTerephthalicAcid 196 6.2.2.2 OxidationofMethylpyridinesandMethylquinolines 199 6.2.2.3 OxidationofHydroaromaticandBenzylicCompounds 201 6.2.3 PreparationofAcetylenicKetonesbyDirectOxidationofAlkynes 203 6.2.4 OxidationofAlcohols 205 6.2.5 EpoxidationofAlkenesusingDioxygenasTerminalOxidant 208 6.2.6 Baeyer-VilligerOxidationofKAOil 209 6.2.7 Preparationofe-CaprolactamPrecursorfromKAOil 210 6.3 FunctionalizationofAlkanesCatalyzedbyNHPI 211 6.3.1 CarboxylationofAlkaneswithCOandO 211 2 6.3.2 FirstCatalyticNitrationofAlkanesusingNO 212 2 6.3.3 SulfoxidationofAlkanesCatalyzedbyVanadium 214 6.3.4 ReactionofNOwithOrganicCompounds 217 6.3.5 NitrosationofCycloalkaneswitht-BuONO 219 6.3.6 Ritter-typeReactionwithCeriumAmmoniumNitrate(CAN) 220 VIII Contents 6.4 Carbon-CarbonBond-FormingReactionviaCatalyticCarbon RadicalsGenerationAssistedbyNHPI 222 6.4.1 OxyalkylationofAlkeneswithAlkanesandDioxygen 222 6.4.2 Synthesisofa-Hydroxy-c-lactonesbyAdditionofa-Hydroxy CarbonRadicalstoUnsaturatedEsters 223 6.4.3 HydroxyacylationofAlkenesusing1,3-DioxolanesandDioxygen 224 6.4.4 HydroacylationofAlkenesUsingNHPIasaPolarityReversal Catalyst 226 6.4.5 ChiralNHPIDerivativesasEnantioselectiveCatalysts:Kinetic ResolutionofOxazolidines 228 6.5 Conclusions 229 References 230 7 Ruthenium-CatalyzedOxidationforOrganicSynthesis 241 Shun-IchiMurahashiandNaruyoshiKomiya 7.1 Introduction 241 7.2 RuO -PromotedOxidation 241 4 7.3 OxidationwithLow-ValentRutheniumCatalystsandOxidants 245 7.3.1 OxidationofAlkenes 245 7.3.2 OxidationofAlcohols 249 7.3.3 OxidationofAmines 255 7.3.4 OxidationofAmidesandb-Lactams 260 7.3.5 OxidationofPhenols 262 7.3.6 OxidationofHydrocarbons 265 References 268 8 SelectiveOxidationofAminesandSulfides 277 Jan-E.Bäckvall 8.1 Introduction 277 8.2 OxidationofSulfidestoSulfoxides 277 8.2.1 StoichiometricReactions 278 8.2.1.1 Peracids 278 8.2.1.2 Dioxiranes 278 8.2.1.3 OxoneandDerivatives 279 8.2.1.4 H O in‘‘FluorousPhase’’andRelatedReactions 279 2 2 8.2.2 ChemocatalyticReactions 280 8.2.2.1 H O asTerminalOxidant 280 2 2 8.2.2.2 MolecularOxygenasTerminalOxidant 293 8.2.2.3 AlkylHydroperoxidesasTerminalOxidant 295 8.2.2.4 OtherOxidantsinCatalyticReactions 297 8.2.3 BiocatalyticReactions 297 8.2.3.1 Peroxidases 298 8.2.3.2 KetoneMonooxygenases 299 8.3 OxidationofTertiaryAminestoN-Oxides 300 8.3.1 StoichiometricReactions 300 8.3.2 ChemocatalyticOxidations 302 Contents IX 8.3.3 BiocatalyticOxidation 306 8.3.4 ApplicationsofAmineN-OxidationinCoupled CatalyticProcesses 306 8.4 ConcludingRemarks 308 References 309 9 LiquidPhaseOxidationReactionsCatalyzedbyPolyoxometalates 315 RonnyNeumann 9.1 Introduction 315 9.2 Polyoxometalates(POMs) 316 9.3 OxidationwithMono-OxygenDonors 317 9.4 OxidationwithPeroxygenCompounds 323 9.5 OxidationwithMolecularOxygen 331 9.6 HeterogenizationofHomogeneousReactions–Solid-Liquid, Liquid-Liquid,andAlternativeReactionSystems 341 9.6.1 Solid-LiquidReactions 341 9.6.2 Liquid-LiquidReactionsandReactionsinAlternativeMedia 343 9.7 Conclusion 346 References 346 10 OxidationofCarbonylCompounds 353 EricV.JohnstonandJan-E.Bäckvall 10.1 Introduction 353 10.2 OxidationofAldehydestoCarboxylicAcids 353 10.2.1 Metal-FreeOxidationofAldehydestoCarboxylicAcids 354 10.2.2 Metal-CatalyzedOxidationofAldehydestoCarboxylicAcids 355 10.3 OxidationofKetones 356 10.3.1 Baeyer-VilligerReactions 356 10.3.2 CatalyticAsymmetricBaeyer-VilligerReactions 356 10.3.2.1 ChemocatalyticVersions 357 10.3.2.2 BiocatalyticVersions 358 References 365 11 Manganese-CatalyzedOxidationwithHydrogenPeroxide 371 WesleyR.Browne,JohannesW.deBoer,DirkPijper,JelleBrinksma, RonaldHage,andBenL.Feringa 11.1 Introduction 371 11.2 Bio-inspiredManganeseOxidationCatalysts 372 11.3 Manganese-CatalyzedBleaching 375 11.4 Epoxidationandcis-DihydroxylationofAlkenes 375 11.4.1 ManganeseSalts 376 11.4.2 Porphyrin-BasedCatalysis 378 11.4.3 Salen-BasedSystems 381 11.4.4 Tri-andTetra-azacycloalkaneDerivatives 385 11.4.4.1 Tetra-azacycloalkaneDerivatives 386 11.4.4.2 TriazacyclononaneDerivatives 387 X Contents 11.4.4.3 ManganeseComplexesforAlkeneOxidationBased onPyridylLigands 403 11.5 ManganeseCatalystsfortheOxidationofAlkanes,Alcohols, andAldehydes 406 11.5.1 OxidationofAlkanes 406 11.5.2 OxidationofAlcoholsandAldehydes 407 11.5.3 Sulfides,Sulfoxides,andSulfones 408 11.6 Conclusions 411 References 412 12 BiooxidationwithCytochromeP450Monooxygenases 421 MarcoGirhardandVladaB.Urlacher 12.1 Introduction 421 12.2 PropertiesofCytochromeP450Monooxygenases 422 12.2.1 Structure 422 12.2.2 Enzymology 423 12.2.3 ReactionsCatalyzedbyP450s 425 12.2.4 P450sasIndustrialBiocatalysts 429 12.2.4.1 Advantages 429 12.2.4.2 ChallengesintheDevelopmentofTechnicalP450Applications 429 12.2.4.3 GeneralAspectsofIndustrialApplicationandEngineering ofP450s 430 12.3 ApplicationandEngineeringofP450sforthePharmaceutical Industry 430 12.3.1 MicrobialOxidationswithP450sforSynthesis ofPharmaceuticals 431 12.3.2 ApplicationofMammalianP450sforDrugDevelopment 434 12.3.2.1 EnhancementofRecombinantExpressioninE.coli 435 12.3.2.2 EnhancementofActivityandSelectivityandEngineeringof NovelActivities 436 12.3.2.3 ConstructionofArtificialSelf-SufficientFusionProteins 436 12.4 ApplicationofP450sforSynthesisofFineChemicals 437 12.5 EngineeringofP450sforBiocatalysis 438 12.5.1 CofactorSubstitutionandRegeneration 438 12.5.1.1 CofactorSubstitutionInVitro 438 12.5.1.2 CofactorRegenerationInVitro 439 12.5.1.3 CofactorRegenerationinWhole-Cells 439 12.5.2 ConstructionofArtificialFusionProteins 440 12.5.3 EngineeringofNewSubstrateSpecificities 440 12.5.3.1 P450 fromPseudomonasputida 440 cam 12.5.3.2 P450 fromBacillusmegaterium 442 BM3 12.6 FutureTrends 443 References 444 Index 451
Description: