ebook img

Modern Nucleophilic Aromatic Substitution PDF

482 Pages·2010·3.81 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modern Nucleophilic Aromatic Substitution

Fran¸coisTerrier ModernNucleophilicAromatic Substitution RelatedTitles Hanessian,S.,Giroux,S.,Merner,B.L. Albini,A.,Fagnoni,M.(eds.) Design andStrategy inOrganic Handbook ofSynthetic Synthesis Photochemistry FromtheChironApproachtoCatalysis 2010 2013 ISBNHardcover:978-3-527-32391-3 ISBNHardcover:978-3-527-33391-2 ISBNSoftcover:978-3-527-31964-0 Likhtenshtein,G. Nicolaou,K.C.,Chen,J.S. Stilbenes ApplicationsinChemistry,LifeSciences ClassicsinTotal SynthesisIII andMaterialsScience FurtherTargets,Strategies,Methods 2010 2011 ISBNHardcover:978-3-527-32388-3 ISBNHardcover:978-3-527-32958-8 ISBNSoftcover:978-3-527-32957-1 Bandini,M.,Umani-Ronchi,A.(eds.) Dalko,P.I.(ed.) Catalytic Asymmetric Friedel-CraftsAlkylations Comprehensive Enantioselective 2009 Organocatalysis ISBNHardcover:978-3-527-32380-7 2013 ISBNHardcover:978-3-527-33236-6 Gleiter,R.,Haberhauer,G. Aromaticity andOther Conjugation Effects 2012 ISBNHardcover:978-3-527-32946-5 Fran¸cois Terrier Modern Nucleophilic Aromatic Substitution Verlag GmbH & Co. KGaA TheAuthor AllbookspublishedbyWiley-VCHare carefullyproduced.Nevertheless,authors, Prof.Fran¸coisTerrier editors,andpublisherdonotwarrantthe informationcontainedinthesebooks, InstitutLavoisier includingthisbook,tobefreeoferrors. UniversityofVersailles Readersareadvisedtokeepinmindthat 45,AvenuedesEtats-Unis statements,data,illustrations,procedural 78035Versailles,Cedex detailsorotheritemsmayinadvertentlybe France inaccurate. LibraryofCongressCardNo.:appliedfor BritishLibraryCataloguing-in-Publication Data Acataloguerecordforthisbookisavailable fromtheBritishLibrary. Bibliographicinformationpublishedbythe DeutscheNationalbibliothek TheDeutscheNationalbibliothek liststhispublicationintheDeutsche Nationalbibliografie;detailedbibliographic dataareavailableontheInternetat <http://dnb.d-nb.de>. 2013Wiley-VCHVerlagGmbH&Co. KGaA,Boschstr.12,69469Weinheim, Germany Allrightsreserved(includingthoseof translationintootherlanguages).Nopart ofthisbookmaybereproducedinany form–byphotoprinting,microfilm,orany othermeans–nortransmittedortranslated intoamachinelanguagewithoutwritten permissionfromthepublishers.Registered names,trademarks,etc.usedinthisbook, evenwhennotspecificallymarkedassuch, arenottobeconsideredunprotectedbylaw. PrintISBN: 978-3-527-31861-2 ePDFISBN: 978-3-527-65617-2 ePubISBN: 978-3-527-65616-5 mobiISBN: 978-3-527-65615-8 oBookISBN: 978-3-527-65614-1 CoverDesign Grafik-DesignSchulz, Fußgo¨nheim Typesetting LaserwordsPrivateLimited, Chennai,India PrintingandBinding MarkonoPrintMedia PteLtd,Singapore Printedonacid-freepaper V Contents Preface XI 1 TheSNArReactions:MechanisticAspects 1 1.1 Introduction 1 1.2 ActivationoftheAromaticSystem:DrivingForceforS Ar N Reactions 5 1.2.1 BenzeneandRelatedAreneDerivatives 5 1.2.2 PyridineandRelatedAza-aromatics 11 1.2.3 Five-MemberedRingHeterocycles 15 1.2.4 ActivationbyElectron-WithdrawingHeterocyclicUnits:The SuperelectrophilicDimensioninS ArSubstitutions 18 N 1.3 LeavingGroup,Nucleophile,Solvent,andMediumEffects 24 1.3.1 TheInfluenceoftheLeavingGroup 24 1.3.1.1 HalogenNucleofugality 24 1.3.1.2 TheMobilityoftheNitroGroupandOtherLeavingGroups 28 1.3.2 TheInfluenceoftheNucleophile 31 1.3.2.1 BasicityandPolarizability 31 1.3.2.2 RitchieandMayr’sScales 36 1.3.3 TheInfluenceoftheSolvent 38 1.3.3.1 S ArReactionsInvolvingAnionicNucleophiles 38 N 1.3.3.2 S ArReactionsInvolvingNeutralNucleophiles 42 N 1.4 EffectsofSpecificStructuralVariationsinthe ActivatedRing 46 1.4.1 orthoversusparaActivation:HydrogenBondingandBuilt-in Solvation 46 1.4.2 ReactivityatUnsubstitutedversusSubstitutedRingCarbonAtoms: SideProcesses 50 1.5 SpectralEvidencefortheIntermediacyofσ-ComplexesinS Ar N Reactions 52 1.6 BaseCatalysisinS ArReactions 57 N 1.6.1 TheSpecificBase–GeneralAcidMechanism 61 1.6.2 TheRate-LimitingProton-TransferMechanism 65 1.7 RegioselectivityinS ArReactions 68 N VI Contents 1.8 AsymmetricS ArSubstitutions 73 N 1.9 ConcertedS ArSubstitutions 76 N 1.9.1 RingActivationandFeasibilityofConcerted Substitutions 76 1.9.2 ConcertedSubstitutionsinTriazines 79 1.10 Conclusion 83 References 84 2 StructureandReactivityofAnionicσ-Complexes 95 2.1 Introduction 95 2.2 StructuralFeaturesofσ-Complexes 96 2.2.1 X-RayCrystallography 96 2.2.2 Gas-PhaseMeisenheimerComplexes 100 2.2.3 NMRSpectroscopy 103 2.2.3.1 ComplexationatUnsubstitutedCarbons 103 2.2.3.2 ComplexationatSubstitutedCarbons 114 2.2.3.3 ComplexationversusProtonAbstraction 123 2.3 ThermodynamicsandKineticsofσ-ComplexFormation 125 2.3.1 TheNatureoftheAromaticSystem 126 2.3.2 TheEffectofRingSubstituents 129 2.3.3 NucleophilicReactivityatSubstitutedversusUnsubstituted Carbons:StericEffects 135 2.3.3.1 RelativeReactivitiesandStabilitiesof1-Substitutedand 1,1-DisubstitutedComplexes 135 2.3.3.2 IsomericAdditionatSubstitutedandUnsubstitutedCarbonsof Electron-DeficientAromatics:RelevancetoNucleophilicAromatic SubstitutionProcesses 140 2.3.4 IntramolecularAdditions:SpiroComplexes 145 2.3.5 DiadductFormation:MetaBridging 148 2.3.6 TheEffectoftheNucleophile 150 2.3.7 SolventandMediumEffects 152 References 156 3 TheSuperelectrophilicDimensioninSNArandRelated σ-ComplexationProcesses 163 3.1 Introduction 163 3.2 TheClassicalDomainofS ArandAnionicσ-Complexation N Reactivity 164 3.3 ReachingtheSuperelectrophilicDimension 167 3.3.1 TheReferenceWaterReaction 167 3.3.2 σ-ComplexationwithWeakCarbonNucleophiles 172 3.3.3 FromthepKaH2OScaletoMayr’sElectrophilicity(E) Scale 174 3.3.4 OxidationPotentialsasDescriptorsoftheSuperelectrophilic Dimension 180 Contents VII 3.4 TheSyntheticPotentialofσ-ComplexationandS ArReactivityinthe N SuperelectrophilicDimension 182 3.4.1 σ-ComplexationReactivity 182 3.4.2 TheSyntheticPotentialofS ArSubstitutions: N Normal(PiCl,NBD-Cl)versusSuper(DNBF-Cl,DNBZ-Cl) Electrophiles 186 3.5 OriginoftheSuperelectrophilicityofNeutral10π Heteroaromatics 196 References 198 4 SyntheticAspectsofIntermolecularSNArReactions 205 4.1 Introduction 205 4.2 IntermolecularDisplacementsofaNitroGroup 206 4.2.1 p-,o-,andm-Dinitrobenzenes– RelatedSubstrates 206 4.2.2 Mononitro-SubstitutedBenzenesandHeteroarenes 216 4.2.3 Dinitro-andTrinitro-SubstitutedBenzenesandRelated Derivatives 228 4.3 IntermolecularDisplacementsofHalogenandOtherLeaving Groups 236 4.3.1 TheEffectoftheLeavingGroup–SyntheticImplications 236 4.3.2 S ArCouplingswithMonoactivatedArenes 242 N 4.3.3 S ArCouplingswithPolyhaloaromatics 251 N 4.3.4 S ArCouplingswithStronglyActivatedArenes 255 N 4.3.5 S ArCouplingswithAzaandPolyazaHeteroaromatics 263 N 4.4 Conclusion 269 References 271 5 IntramolecularSNArReactions 279 5.1 Introduction 279 5.2 S ArCyclizations 280 N 5.2.1 SubstitutionswithOxygenNucleophiles 280 5.2.2 SubstitutionswithNitrogenNucleophiles 290 5.2.3 SubstitutionsbySulfurNucleophiles 296 5.2.4 SubstitutionsbyCarbonNucleophiles 298 5.2.5 IntramolecularS ArReactionsinMacrocyclization 300 N 5.3 SmilesRearrangements 303 5.3.1 O→NandN→ORearrangements 304 5.3.2 N→NRearrangements 311 5.3.3 O→ORearrangements 315 5.3.4 N→SandS→NRearrangements 318 5.3.5 S→OandSe→ORearrangements 321 5.3.6 RearrangementswithC–CBondFormation.Truce–Smiles Rearrangements 325 5.4 Conclusion 331 References 332 VIII Contents 6 NucleophilicAromaticSubstitutionsofHydrogen 337 6.1 Introduction 337 6.2 ReactionsInvolvingOxidationofσ-Complex-Type Intermediates 339 6.2.1 SpontaneousOxidations 339 6.2.2 ReactionsInvolvinganExternalOxidizing Agent(ONSH) 351 6.2.2.1 OxidationofOxygen-andNitrogen-BondedAdducts 353 6.2.2.2 OxidationofCarbon-BasedσHAdducts 357 6.2.2.3 ElectrochemicalOxidation 372 6.3 VicariousNucleophilicAromaticSubstitutionsofHydrogen (VNS) 374 6.3.1 VNSAminationandHydroxylationProcesses 374 6.3.2 VNSSubstitutionswithCarbonNucleophiles 378 6.3.2.1 EffectoftheStructureoftheNitroarene 379 6.3.2.2 EffectoftheStructureoftheCarbanion 384 6.4 DeoxygenativeS ArHSubstitutions 395 N 6.5 CineandTeleSubstitutions 397 6.5.1 TheVonRichterRearrangement 398 6.5.2 o-DinitroSix-MemberedRingAromaticsandRelated Derivatives 400 6.5.3 m-DiactivatedArenesandRelatedSubstrates 404 6.5.4 CineandTeleSubstitutionsinHeterocyclicSeries 407 6.5.4.1 AzaandPolyazaaromatics 407 6.5.4.2 Five-MemberedRingHeteroaromatics 409 6.6 Conclusion 414 References 415 7 OtherSNArSubstitutionPathways 423 7.1 S (ANRORC)Substitutions 423 N 7.1.1 Introduction 423 7.1.2 AzaAromaticswithoutNitroActivation 423 7.1.3 Nitro-ActivatedAzaAromatics 426 7.1.4 Conclusion 429 7.2 RadicalNucleophilicAromaticSubstitutions 430 7.2.1 Introduction 430 7.2.2 RadicalAnionFormationin‘‘S Ar’’Systems 431 N 7.2.3 RepresentativeRadicalNucleophilicAromatic Substitutions 438 7.2.4 SubstitutionsviaCharge-TransferComplexesofAnionicRadical Character 445 7.3 NucleophilicAromaticPhotosubstitutions 448 7.3.1 GeneralFeatures 448 7.3.2 S 2Ar∗Reactions 450 N 7.3.3 S (ET)Ar∗Reactions 453 N Contents IX 7.3.4 S 1Ar∗Reactions 455 N 7.3.5 RegioselectivityandChemicalTheory 456 7.3.5.1 TheFrontierMolecularOrbitalTheory 456 7.3.5.2 The‘‘EnergyGap’’ModelandOtherRecentApproaches 458 References 459 Index 465 XI Preface It is now well documented that nucleophilic aromatic substitutions represent a class of reactions of fundamental importance in organic synthesis. In fact, the interest in the field goes back to 60 years ago when J.F. Bunnett published an authoritative review emphasizing the overwhelming importance of the presence of electron-withdrawing substituents, especially a nitro group, to achieve such reactions (Chem. Rev. 1951). This induced a number of investigations but, at the time, the focus was essentially on those substitutions that proceeded via the simpletwo-stepaddition–eliminationmechanismproposedbyBunnett,knownas the S Ar mechanism. As the first significant recognition of the potential of these N reactions,J.Miller,oneofthepioneeringcontributorstothefield,publishedabook in1968.Forthemostpart,thisbookwasbasedonthemechanisticunderstanding ofsimplesubstitutionsandithasservedasanS Ar‘‘Bible’’for20years. N Onthebasisoftheinformationsofaraccumulated,theperiod1970–1990has seenmanydevelopmentsintheS Arfield.Inadditiontoanimprovedunderstand- N ingofthefactorsgoverningthetwo-stepaddition–eliminationpathwayformulated by Bunnett, many investigations have focused on the synthetic applicability of S Arprocesses,especiallythoseinvolvingarenestructuresactivatedbyatleastone N NO group. In this context, new reaction pathways have been discovered, which 2 have considerably broadened the scope and importance of nucleophilic aromatic substitutions.OfparticularimportancewastherecognitionbyMakosza(1983)of reactions in which an aromatic hydrogen atom can be replaced by a nucleophile under experimental conditions that lead overall to a formal S Ar departure of N an extremely unstable hydride anion. The so-called vicarious and oxidative sub- stitutions of hydrogen are representative of these reactions that give access to promisingsyntheticapproaches.Anothertypeofsubstitutionproceedingformally asanS Arreaction,butoccurringinfactthroughmultistepsequencesinvolving N nucleophilic addition, ring opening, and ring closure, was discovered by van der Plasin1968.CommonlyreferredtoasS (ANRORC)substitutions,theseprocesses N provide a useful entry to the functionalization of aza-activated heteroaromatics. Other significant investigations carried out in the 1970–1990 period dealt with the photostimulation of S Ar substitutions (Havinga, Wubbels, Mutai) and the N possible role of electron transfer in the reactions (Shein, Marquet, Scorrano). In the late 1980s, it become clear that the efforts so far devoted to the mechanistic

Description:
Content: Chapter 1 The SNAr Reactions: Mechanistic Aspects (pages 1–94): Chapter 2 Structure and Reactivity of Anionic ??Complexes (pages 95–162): Chapter 3 The Superelectrophilic Dimension in SNAr and Related ??Complexation Processes (pages 163–203): Chapter 4 Synthetic Aspects of Intermolecu
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.