ebook img

Modern Methods in Collisional-Radiative Modeling of Plasmas PDF

220 Pages·2016·6.978 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modern Methods in Collisional-Radiative Modeling of Plasmas

Springer Series on Atomic, Optical and Plasma Physics 90 Yuri Ralchenko Editor Modern Methods in Collisional- Radiative Modeling of Plasmas Springer Series on Atomic, Optical, and Plasma Physics Volume 90 Editor-in-chief Gordon W.F. Drake, Windsor, Canada Series editors James Babb, Cambridge, USA Andre D. Bandrauk, Sherbrooke, Canada Klaus Bartschat, Des Moines, USA Philip George Burke, Belfast, UK Robert N. Compton, Knoxville, USA Tom Gallagher, Charlottesville, USA Charles J. Joachain, Bruxelles, Belgium Peter Lambropoulos, Iraklion, Greece Gerd Leuchs, Erlangen, Germany Pierre Meystre, Tucson, USA The Springer Series on Atomic, Optical, and Plasma Physics covers in a comprehensive manner theory and experiment in the entire field of atoms and molecules and their interaction with electromagnetic radiation. Books in the series provide a rich source of new ideas and techniques with wide applications in fields such as chemistry, materials science, astrophysics, surface science, plasma technology, advanced optics, aeronomy, and engineering. Laser physics is a particular connecting theme that has provided much of the continuing impetus for new developments in the field, such as quantum computation and Bose-Einstein condensation. The purpose of the series is to cover the gap between standard undergraduate textbooks and the research literature with emphasis on the fundamental ideas, methods, techniques, and results in the field. More information about this series at http://www.springer.com/series/411 Yuri Ralchenko Editor Modern Methods in Collisional-Radiative Modeling of Plasmas 123 Editor YuriRalchenko National Institute ofStandards and Technology Gaithersburg, MD USA ISSN 1615-5653 ISSN 2197-6791 (electronic) SpringerSeries onAtomic, Optical, andPlasma Physics ISBN978-3-319-27512-3 ISBN978-3-319-27514-7 (eBook) DOI 10.1007/978-3-319-27514-7 LibraryofCongressControlNumber:2016930267 ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland Preface The light coming from plasmas has always been one of the primary sources of knowledge on their properties. Be it multi-million-degree magnetic or inertial confinementplasmas,dazzlingstreamersofthesolarcorona,photoionizedplasmas generated by powerful z-pinches, or industrial plasmas for lithography, their spectra, from hard X-rays to infrared and beyond, can give us a great deal of informationaboutdiversecharacteristicssuchastemperatureanddensity,turbulent motions,ionizationdistributions,andelectricandmagneticfields,tonameafew.In mostcasesthemeasuredplasmaemissionandabsorptionspectraarequitecomplex due to a large number of spectral lines with varying intensities and line shapes, as well as the presence of continuum photons. As a result, a reliable interpretation of spectroscopic experiments is mostly achieved with rather sophisticated methods capableofadequatelydescribingtheorigin,propagationandpossibledestructionof plasma photons. Oneofthemostgeneralapproachestocalculationofplasmapopulationkinetics andspectraisthecollisional-radiative(CR)modeling.Firstintroducedmorethan50 years ago in a seminal paper by Bates, Kingston, and McWhirter, it addresses determinationofstatepopulationsandensuingspectrafromamicroscopicpictureof interactions between emitters (i.e., atoms and ions in plasma) and other plasma particles.Thusitaccountsforthemostrelevantcollisionalandradiativeprocesses, hence the name. The variety of terrestrial and astrophysical plasmas results in a considerablediversityofpossibleinteractionsandenvironments,fromsimpleelec- tron–atom (ion) collisions in a stationary optically thin plasma to non-Maxwellian particle distribution functions to relatively weak forbidden radiative transitions to heavy-particle interactions to transient and/or optically thick plasmas, and so on. Unlike equilibrium descriptions of plasma population kinetics, for example, local thermodynamicequilibrium(LTE),ageneralCRapproachcallsforafairlydetailed (and of course reasonably accurate!) representation of relevant elementary interac- tions. This approach connects plasma modeling with the powerful apparatus of contemporaryatomicphysics,whichmayrequireutilizationofveryextensivesetsof atomicdata. v vi Preface The idea for this book originated from invigorating discussions among the participants of the series of non-LTE code comparison workshops. The present collection of chapters is aimed at providing an overview of the modern methods employedincollisional-radiativemodelingwithemphasisonrecentdevelopments. Suchareviewseemstobelongoverdue,notwithstandingextensiveapplicationsof CR models to various plasmas as witnessed by hundreds, if not thousands, of articles on this subject. The eight chapters presented here address both general topics, such as the bal- ancebetweendetailandcompletenessinCRmodelsandself-consistentlarge-scale CR modeling, and more specific issues, such as simulations with different repre- sentations of atomic structure, applications in radiation hydrodynamics and inter- action of monochromatic X-rays with matter, astrophysical applications, and validation and verification of CR models. This collection is not an introductory textbook and thus is intended for advanced students and young researchers who alreadyhave some knowledge in CR approach. We hopealso that it will be useful for scientists and researchers working in general plasma spectroscopy. Whenthisbookwasinafinalstageofpreparation,oneofthecontributors,Prof. VladimirG.NovikovoftheKeldyshInstituteofAppliedMathematicsinMoscow, Russia,suddenly passed away.He was anexcellentphysicist with a wide range of interests and one of the leading specialists in quantum-statistical methods for high-temperature plasmas. We dedicate this book to his memory. Gaithersburg, MD, USA Yuri Ralchenko Contents 1 Balancing Detail and Completeness in Collisional-Radiative Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Stephanie B. Hansen 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 State-Space Completeness. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Degree of State Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Application-Driven Approaches to Balancing Detail and Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4.1 Coronal Fine-Structure Models . . . . . . . . . . . . . . . . . . . 10 1.4.2 General Models for Moderate-Density Plasmas. . . . . . . . 10 1.4.3 Self-consistent Field Models for Dense Plasma . . . . . . . . 13 1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 Self-consistent Large-Scale Collisional-Radiative Modeling. . . . . . . 17 Christopher J. Fontes, James Colgan and Joseph Abdallah Jr 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 Large-Scale Collisional-Radiative Modeling . . . . . . . . . . . . . . . 20 2.2.1 The Los Alamos Suite of Atomic Physics Codes. . . . . . . 20 2.2.2 Selecting a List of Configurations . . . . . . . . . . . . . . . . . 22 2.2.3 Selecting the Level of Refinement. . . . . . . . . . . . . . . . . 26 2.2.4 Constructing the Rate Matrix . . . . . . . . . . . . . . . . . . . . 28 2.2.5 Steady-State Solutions Versus Time-Dependent Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.6 Boundary Conditions for the Steady-State CR Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.7 Different Methods of Solving the Steady-State CR Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3 An Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.4 Summary and Outlook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 vii viii Contents 3 Generalized Collisional Radiative Model Using Screened Hydrogenic Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 H.-K. Chung, S.B. Hansen and H.A. Scott 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.2 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.2.1 Generalized Collisional-Radiative Atomic Levels. . . . . . . 53 3.2.2 Atomic Transition Rates. . . . . . . . . . . . . . . . . . . . . . . . 58 3.2.3 Plasma Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.2.4 Spectroscopic Emissivity and Opacity . . . . . . . . . . . . . . 66 3.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3.1 Steady-State Plasmas Generated by Long-Pulse Lasers. . . 68 3.3.2 Two-Temperature Plasmas Generated by Short-Pulse Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3.3 Photoionization Equilibrium Plasmas. . . . . . . . . . . . . . . 70 3.3.4 Photo-Ionized Plasmas Generated by X-Ray Free Electron Lasers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.3.5 Radiative Loss Rates of Heavy Elements . . . . . . . . . . . . 73 3.4 Validities and Limitations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.4.1 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.4.2 Improvement on SH Model Spectra. . . . . . . . . . . . . . . . 75 3.4.3 Dielectronic Recombination . . . . . . . . . . . . . . . . . . . . . 76 3.4.4 Radiative Power Losses . . . . . . . . . . . . . . . . . . . . . . . . 76 3.4.5 Continuum Lowering. . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.4.6 CR Models in High-Energy-Density Radiation- Hydrodynamic Simulations. . . . . . . . . . . . . . . . . . . . . . 78 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4 Collisional-Radiative Modeling for Radiation Hydrodynamics Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Howard A. Scott 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.2 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.3 Non-LTE Material Response. . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.4 High Density Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.5 Detailed Balance, Energy Conservation and Discretization . . . . . 98 4.6 Conservation and Consistency in Non-LTE Thermal Radiation Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5 Average Atom Approximation in Non-LTE Level Kinetics. . . . . . . 105 Vladimir G. Novikov 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.2 Level Kinetics Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Contents ix 5.3 The Rates of Collisional and Radiative Processes. . . . . . . . . . . . 108 5.3.1 Excitation by Electron Impact. . . . . . . . . . . . . . . . . . . . 108 5.3.2 Electron-Impact Ionization and Three-Body Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.3.3 Autoionization and Dielectronic Capture. . . . . . . . . . . . . 113 5.3.4 Rates of Radiative Processes. . . . . . . . . . . . . . . . . . . . . 114 5.4 Configuration Accounting in the Extended CR-AA Model . . . . . 116 5.5 Reducing Detailed Level Kinetics to Extended CR-AA Model. . . 117 5.6 The Calculation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.7 Results of Calculation for Tin Plasma . . . . . . . . . . . . . . . . . . . 121 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6 Collisional-Radiative ModelingandInteractionofMonochromatic X-Rays with Matter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 O. Peyrusse 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 6.2 Atomic Model Construction for the Modeling of X-Ray Interaction with Matter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 6.3 Interaction with Gas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6.4 Interaction with Small Objects. . . . . . . . . . . . . . . . . . . . . . . . . 135 6.5 Interaction with Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.5.1 Population Kinetics and Atomic Structure at Solid Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.5.2 Temperature and Population Evolution. . . . . . . . . . . . . . 139 6.5.3 Energy Deposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 6.5.4 Modeling of Al, V and Ag Samples Irradiated in the X-UV or X-Ray Range. . . . . . . . . . . . . . . . . . . . 146 6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 7 Spectral Modeling in Astrophysics—The Physics of Non- equilibrium Clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 G.J. Ferland and R.J.R. Williams 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 7.2 Working with Real Nebulae: The Observational Questions We Are Trying to Answer. . . . . . . . . . . . . . . . . . . . 155 7.3 Approaches to Astronomical Spectral Modelling . . . . . . . . . . . . 162 7.4 Spectral Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 7.4.1 The Ionization Balance in the ISM Limit . . . . . . . . . . . . 166 7.5 The Physics of the Astronomical Problem. . . . . . . . . . . . . . . . . 173 7.6 Future Opportunities and Challenges . . . . . . . . . . . . . . . . . . . . 174 7.6.1 New Spectroscopic Opportunities . . . . . . . . . . . . . . . . . 174 7.6.2 And the Grand Challenges to Exploiting Them. . . . . . . . 177 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.