ebook img

Modern Meta-Analysis : Review and Update of Methodologies PDF

316 Pages·2017·19.28 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modern Meta-Analysis : Review and Update of Methodologies

Ton J. Cleophas Aeilko H. Zwinderman Modern Meta-Analysis Review and Update of Methodologies Modern Meta-Analysis Ton J. Cleophas (cid:129) Aeilko H. Zwinderman Modern Meta-Analysis Review and Update of Methodologies TonJ.Cleophas AeilkoH.Zwinderman AlbertSchweitzerHospital DepartmentofEpidemiologyandBiostatistics DepartmentofMedicine AcademicMedicalCenter Sliedrecht,TheNetherlands Amsterdam,Noord-Holland TheNetherlands ISBN978-3-319-55894-3 ISBN978-3-319-55895-0 (eBook) DOI10.1007/978-3-319-55895-0 LibraryofCongressControlNumber:2017935817 ©SpringerInternationalPublishingSwitzerland2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained hereinor for anyerrors oromissionsthat may havebeenmade. Thepublisher remainsneutralwith regardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Modernmeta-analysesdomorethancombinetheeffectsizesofaseriesofsimilar studies. The term “meta” in meta-analysis can be interpreted as “beyond”, and meta-analyses are currently increasingly applied for any analysis beyond the primary analysis of studies. Terminologies like meta-learning, metacognition, meta-knowledge, higher order of thinking, and awareness of learning processes andthinkingskillsareused.Weshouldaddthatnowadays,wehaveabigbodyof research data, thanks to the publication of one scholarly article every 20 seconds. Handling those big research data with powerfulmethods likemeta-analytic forest plots,Bayesiannetworks,automaticdataminingprograms,etc.cannowprovidea morerapidlearningprocessofessentialissuesandscientificprogress.Veryimpor- tantand,evenmoreso,withbigdata,theexchangeabilityassumptionemphasized intheearly80thmeta-analysesremainsvitaltoday:patientandstudycharacteris- ticsmustbeexchangeableandsimilarenoughforstudiestobecompared. Thisbookwaswrittenfornonmathematicalprofessionalsofmedicalandhealth care,inthefirstplace,but,inaddition,foranyoneinvolvedinanyfieldinvolving scientific research. Every methodology in this update will be explained with data examples,bothhypothesizedandrealdata.Theauthorshavepublishedmanypretty innovative meta-analyses from the turn of the century till now. A list of interna- tionalpublicationsisgivenunderneath.Thiseditionwillreviewthecurrentstateof the art and will use for that purpose the methodological aspects of these publica- tions,inadditiontootherrelevantmethodologicalissuesfromliterature.Toreaders requestingmorebackground,theoretical,andmathematicalinformationofcompu- tations given, several textbooks complementary to the current production and written by the same authors are available: Statistics Applied to Clinical Studies 5th edition, 2012; Machine Learning in Medicine: A Complete Overview, 2015; SPSSforStartersand2ndLevelers2ndedition,2015;ClinicalDataAnalysisona Pocket Calculator 2nd edition, 2016; and Understanding Clinical Data Analysis from published research, 2016, all of which are edited by Springer Heidelberg, Germany. v vi Preface Aretherealternative worksinthe field? Yes, there are, particularlyinthe field of psychology. Psychologists have invented meta-analyses in 1970, and they have continuously written and updated methodologies ever since. Although very interesting, their work, just like the whole discipline of psychology, is rather explorative in nature, and so is the focus of their approach to meta-analysis. As such,theyarenotparticularlyinvolvedinconfirmatoryplacebo-controlleddouble- blind therapeutic clinical trials, and, despite their overwhelming productions and sometimesexpensivesoftware,theyneveraddressclinicallyimportantsubjectslike the meta-analysis with diagnostic tests, contrast coefficients, tetrachoric correla- tions, Bayesian networks, quasi-likelihood modeling, correlation coefficients to z transformations, confounding and interaction assessments, and other clinically relevant subjects. Then, there is the field of epidemiologists. Many of them are fromtheschoolofangryyoungmen,whopublishshockingnewsallthetime,and JAMA and other publishers are happy to publish it. The reality is, of course, that things are usually not as bad as they seem. The recently published book entitled Meta-analysis with R, Springer Heidelberg, Germany, 2015, is lovely and, in addition, written by professional statisticians. A problem is that all analyses are withRsoftware.Rhasamiserablemenuprogramandrequireslotsofsyntaxtobe learned.Thisisprohibitivetomanyclinicalandotherhealthprofessionals. The current edition is a must-read textbook written by a very experienced mathematical statistician and an internist/clinical pharmacologist. It addresses newmeta-analyticalmethodologiesrelevanttoclinicalresearchincludingdiagnos- ticandtherapeuticclinicaltrialsanddrugresearch.Thebookwillconsist,likeour previous books, of many examples and step-by-step analyses using software like the free MetaXL from Excel, the SPSS work bench for automatic data mining entitledSPSSModeler,thefreeKonstanzinformationminer(KNIME),andpocket calculator methods, if more convenient. In order for readers to perform their own analyses,SPSSdatafilesaregiveninextras.springer.com. Published Meta-analyses from the Authors 1. CleophasTJ,NiemeyerMG,VanderWallEE.Wine,beer,andspiritsandthe riskofdeathandmyocardialinfarction.Cardiologie1999;6:415–21. 2. HornstraN,HoogstratenB,CleophasTJ,VanderMeulenJ.Homocysteinemia andcoronaryarterydisease,riskfactorornot?Ameta-analysis.AmJCardiol 2000;86:1005–1009. 3. Cleophas TJ, Zwinderman AH. Beta-blockers and heart failure, a meta- analysis.IntJClinPharmacolTher2001;39:383–8. 4. Cleophas TJ, Zwinderman AH. Beta-blockers and heart failure, a meta- analysis.IntJClinPharmacolTher2001;39:562–3,letters. 5. CleophasTJ,GrabowskyI,NiemeyerMG,Ma¨kelW.Nebivololmonotherapy in3,147patientswithmildhypertension.JHypertens2001;19:s2:261. Preface vii 6. Cleophas TJ, Van Marum R. Meta-analysis of efficacy and safety of second- generation dihydropyridine calcium channel blockers in chronic heart failure. AmJCardiol2001;87:487–90. 7. Cleophas TJ, Van Marum R, Cleophas AF, Zwinderman AH. Updated Meta- analysis of second generation dihydropyridine calcium channel blockers in chronic heart failure. Br J Clin Pharmacol 2001; abstract from FIGON FederatieInnovatiefGeneesmiddelenOnderzoek,Lunteren,October2001). 8. Cleophas TJ, Van Marum R, Cleophas AF, Zwinderman AH. Updated Meta -analysis of second generation dihydropyridine calcium channel blockers in chronicheartfailure.CochraneLibraryHeartGroup,dataonline,2001. 9. CleophasTJ,ZwindermanAH.Primerinstatistics.Meta-analysis.Circulation 2007;115:2870–5. 10. MasoorK,CleophasTJ.Meta-analysisofheartfailurein39,505patientswith diabetesmellitus.JCardFail2009;15:305–9. 11. AtiqiR,VanIerselC,CleophasTJ.Accuracyofquantitativediagnostictests. IntJClinPharmacolTher2009;47:153–9. 12. Atiqi R, Cleophas TJ, Van Bommel E, Zwinderman AH. Meta-analysis of recentstudiesonpatientsadmittedtohospitalduetoadversedrugeffects.Int JClinPharmacolTher2009;47:54956. 13. CleophasTJ,ZwindermanAH.Meta-analysesofdiagnostictests.ClinChem LabMed2009;47:1351–4. 14. CleophasTJ,AtiqiR,ZwindermanAH.Handlingcategoriesproperly:anovel objectiveofclinicalresearch.AmJTher2012;19:287–93. 15. CleophasEP,CleophasTJ.Multistageregression,anovelmethodformaking betterpredictionsfromyourefficacydata.AmJTher2011:Doi:10.1097. 16. Sprangers S, Levin M, Cleophas T. Active recruitment for clinical trials (multinomial logistic regression), Abstract from FIGON Federatie Innovatie GeneesmiddelenOnderzoek,Lunteren,October2006. 17. Akin S, Yetgin T, Brugts JJ, Dirkali A, Zijlstra F, Cleophas TJ. Effect of collateralsondeathsandre-infarctionsinpatientswithcoronaryarterydisease: ameta-analysis.NethHeartJ2013:DOI10.1007. 18. Van Bommel E, Cleophas TJ. Antihypertensive effect of potassium, a meta -analysis.IntJClinPharmacolTher2012;50:478–81. 19. Van Houwelingen HC, Zwinderman AH. A bivariate approach to meta- analysis.StatMed1993;12:2273–84. 20. Glas AS, Roos D, Deutekom M, Zwinderman AH, Bossuyt PM. Tumor markers in the diagnosis of primary bladder cancer: a systematic review. JUrol2003;169:1975. 21. ReitsmaJB,GlasAS,RutjesAW,ScholtenRJ,BossuytPM,ZwindermanAH, et al. Bivariate analysis of sensitivity and specificity produces informative summarymeasuresindiagnosticreviews.JClinEpidemiol2005;58:982–90. Sliedrecht,TheNetherlands TonJ.Cleophas Amsterdam,TheNetherlands AeilkoH.Zwinderman Contents 1 Meta-analysisinaNutshell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 HowtoPerformaMeta-analysis?. . . . . . . . . . . . . . . . . . . . . 5 1.4 ScientificRigor,Rule1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 ScientificRigor,Rule2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.6 ScientificRigor,Rule3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.7 ScientificRigor,Rule4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.8 FirstPitfall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.9 SecondPitfall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.10 ThirdPitfall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.11 BenefitsandCriticismsofMeta-analyses. . . . . . . . . . . . . . . . 19 1.12 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2 MathematicalFramework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 GeneralFramework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 ContinuousOutcomeData,MeanandStandard Deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.1 MeansandStandardDeviation(SD). . . . . . . . . . . . . 25 2.4 ContinuousOutcomeData,StrictlyStandardized MeanDifference(SSMD). . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5 ContinuousOutcomeData,RegressionCoefficient andStandardError. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.6 ContinuousOutcomeData,Student’sT-Value. . . . . . . . . . . . 28 2.7 ContinuousOutcomeData,CorrelationCoefficient (Rorr)andItsStandardError. . . . . . . . . . . . . . . . . . . . . . . . 29 2.8 ContinuousOutcomeData,CoefficientofDetermination R2orr2andItsStandardError. . . . . . . . . . . . . . . . . . . . . . . . 31 2.9 BinaryOutcomeData,RiskDifference. . . . . . . . . . . . . . . . . 32 ix x Contents 2.10 BinaryOutcomeData,RelativeRisk. . . . . . . . . . . . . . . . . . . 32 2.11 BinaryOutcomeData,OddsRatio. . . . . . . . . . . . . . . . . . . . . 33 2.12 BinaryOutcomeData,SurvivalData. . . . . . . . . . . . . . . . . . . 33 2.13 Pitfalls,PublicationBias. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.14 Pitfalls,Heterogeneity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.15 Pitfalls,LackofSensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.16 NewDevelopments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.17 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3 Meta-analysisandtheScientificMethod. . . . . . . . . . . . . . . . . . . . . 43 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2 Example1,thePotassiumMeta-analysisoftheChap.6. . . . . 44 3.3 Example2,theCalciumChannelBlockerMeta-analysis oftheChap.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.4 Example3,theLargeRandomizedTrialsMeta-analyses oftheChap.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.5 Example4,theDiabetesandHeartFailureMeta-analysis oftheChap.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.6 Example5,theAdverseDrugEffectAdmissions andtheTypeofResearchGroupMeta-analysis oftheChap.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.7 Example6,theCoronaryEventsandCollaterals Meta-analysisoftheChap.8. . . . . . . . . . . . . . . . . . . . . . . . . 47 3.8 Example7,theDiagnosticMeta-analysisofMetastatic LymphNodeImagingoftheChap.10. . . . . . . . . . . . . . . . . . 47 3.9 Example8,theHomocysteineandCardiacRisk Meta-analysisoftheChap.11. . . . . . . . . . . . . . . . . . . . . . . . 48 3.10 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4 Meta-analysisandRandomEffectAnalysis. . . . . . . . . . . . . . . . . . 51 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2 VisualizingHeterogeneity. . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.3 BinaryOutcomeData,FixedEffectAnalysis. . . . . . . . . . . . . 55 4.4 BinaryOutcomeData,RandomEffectAnalysis. . . . . . . . . . . 56 4.5 ContinuousOutcomeData,FixedEffectAnalysis. . . . . . . . . . 58 4.6 ContinuousOutcomeData,RandomEffectAnalysis. . . . . . . . 60 4.7 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5 Meta-analysiswithStatisticalSoftware. . . . . . . . . . . . . . . . . . . . . . 63 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.2 UsingOnlineMeta-analysisCalculatorsandMetaXL FreeMeta-analysisSoftware. . . . . . . . . . . . . . . . . . . . . . . . . 63 5.3 ContinuousOutcomeData,OnlineMeta-analysis Calculator. . . . . .. . . . .. . . . . .. . . . .. . . . .. . . . . .. . . . .. 64 Contents xi 5.4 BinaryOutcomeData,MetaXLFreeMeta-analysis Software. .. . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . .. . . 67 5.4.1 TraditionalRandomEffectAnalysis. . . . . . . . . . . . . 68 5.4.2 QuasiLikelihood(InvertVarianceHeterogeneity (IVhet))ModelingforHeterogeneity. . . . . . . . . . . . . 72 5.5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6 Meta-analysesofRandomizedControlledTrials. . . . . .. . . . . . . .. 79 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.2 Example1:SingleOutcomes. . . . . . . . . . . . . . . . . . . . . . . . . 81 6.3 Example1,ConfirmingtheScientificQuestion. . . . . . . . . . . . 85 6.4 Example2:MultipleOutcomes. . . . . . . . . . . . . . . . . . . . . . . 85 6.5 Example2,HandlingMultipleOutcomes. . . . . . . . . . . . . . . . 87 6.6 Example3,LargeMeta-analysesWithoutNeedforPitfall Assessment. . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . 88 6.7 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7 Meta-analysisofObservationalPlusRandomizedStudies. . . . . . . 93 7.1 IntroductionandExample. . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7.2 SoundClinicalArgumentsandScientificQuestion. . . . . . . . . 94 7.3 SummaryStatistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.4 PooledResults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 7.5 HeterogeneityAssessments. . . . . . . . . . . . . . . . . . . . . . . . . . 98 7.6 PublicationBiasAssessments. . . . . . . . . . . . . . . . . . . . . . . . 98 7.7 RobustnessAssessments. . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.8 ImprovedInformationfromtheCombinedMeta-analysis. . . . 99 7.9 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 8 Meta-analysisofObservationalStudies. .. . . . .. . . . .. . . .. . . . .. 101 8.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 8.2 ProspectiveOpenEvaluationStudies. . . . . . . . . . . . . . . . . . . 102 8.3 Example1,EventAnalysisinPatientswithCollateral CoronaryArteries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 8.4 Example1,theScientificMethod. . . . . . . . . . . . . . . . . . . . . 103 8.5 Example1,PublicationBias. . . . . . . . . . . . . . . . . . . . . . . . . 104 8.6 Example1,PooledResults,TestsforHeterogeneityand Robustness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 8.7 Example1,Meta-regressionAnalysis. . . . . . . . . . . . . . . .. . . 106 8.8 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 8.9 Example2,EventAnalysisofIatrogenicHospital Admissions. . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . 108 8.10 Example2,theScientificMethod. . . . . . . . . . . . . . . . . . . . . 108 8.11 Example2,PublicationBias. . . . . . . . . . . . . . . . . . . . . . . . . 109

Description:
Modern meta-analyses do more than combine the effect sizes of a series of similar studies. Meta-analyses are currently increasingly applied for any analysis beyond the primary analysis of studies, and for the analysis of big data. This 26-chapter book was written for nonmathematical professionals of
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.