ebook img

Modern Fourier Analysis, Third Edition [3rd Ed] (Instructor Solution Manual, Solutions) PDF

265 Pages·2014·1.27 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modern Fourier Analysis, Third Edition [3rd Ed] (Instructor Solution Manual, Solutions)

Loukas Grafakos Modern Fourier Analysis, Third Edition Solutions of all the exercises March20,2014 Springer Για την Iωα´ννα,την Kωνσταντ´ινα,και την Θεoδω´ρα vi Iwouldliketoexpressmydeepgratitudetothefollowingpeoplewhohelpedinthepreparationofthesolutionsofthebooks ClassicalFourierAnalysis,3rdedition,GTM249andModernFourierAnalysis,3rdedition,GTM250. Iremainsolelyresponsibleforanyerrorcontainedintheenclosedsolutions. Mukta Bhandari, Jameson Cahill, Santosh Ghimire, Zheng Hao, Danqing He, Nguyen Hoang, Sapto Indratno, Richard Lynch,DiegoMaldonado,HanhVanNguyen,PeterNguyen,JessePeterson,SharadSilwal,BrianTuomanen,XiaojingZhang, Contents vii 1 Smoothness and Function Spaces 1.1Smoothfunctionsandtempereddistributions Exercise1.1.1 Givenmultiindicesα,β showthatthereareconstantsC,C(cid:48)suchthat ρ (ϕ)≤C ∑ ∑ ρ(cid:48) (ϕ), α,β γ,δ |γ|≤|α||δ|≤|β| ρ(cid:48) (ϕ)≤C(cid:48) ∑ ∑ ρ (ϕ). α,β γ,δ |γ|≤|α||δ|≤|β| forallSchwartzfunctionsϕ. (cid:2)Hint: The first inequality follows by Leibniz’s rule. Conversely, to express ξα∂βϕ in terms of linear combinations of ∂β(ξγϕ(ξ)), proceed by induction on |α|, using that ξj∂βϕ =∂β(ξjϕ)−∂βϕ−(βj−1)∂β−ejϕ if βj ≥1 and ξj∂βϕ = ∂β(ξ ϕ)ifβ =0.Hereβ =(β ,...,β )ande =(0,...,1,...,0)with1inthe jthentry.(cid:3) j j 1 n j Solution. Firstofall,wenoticethat∂β(ξαϕ)isequaltoasumoftermsoftheformc ξγ∂β−γϕ,soanyρ (ϕ)isboundedbyafinite γ α,β sumofseminormsρ(cid:48) (ϕ). γ,δ Conversely,wefirstverifytheidentity ξ ∂βϕ =∂β(ξ ϕ)−∂βϕ−(β −1)∂β−ejϕ j j j ifβ ≥1byinductiononβ .Indeed,saythatitholdsforβ .Then j j j ∂β+ej(ξ ϕ)=∂ ∂β(ξ ϕ)=∂ (ξ ∂βϕ)+∂ (∂βϕ−(β −1)∂β−ejϕ) j j j j j j j =∂βϕ+ξ ∂β+ejϕ+∂β+ejϕ+(β −1)∂βϕ j j =ξ ∂β+ejϕ+∂β+ejϕ+β ∂βϕ j j fromwhichitfollowsthattheclaimedidentityholdsforβ +1. j Having verified the preceding identity, we conclude that ξ ∂βϕ can be expressed as a linear combination of terms of the j form∂γ(ξ ϕ)and∂γ(ϕ).Thenξ ξ ∂βϕcanbeexpressedasalinearcombinationoftermsoftheformξ ∂γ(ξ ϕ)andξ ∂γ(ϕ). j k j k j k Applying the preceding conclusion, we deduce that ξ ξ ∂βϕ can be expressed as a linear combination of terms of the form k j ∂γ(ξ ξ ϕ),∂γ(ξ ϕ),∂γ(ξ ϕ),and∂γϕ.Continuinginthisway,weconcludethatanyξα∂βϕ isalinearcombinationofterms k j k j oftheform∂δ(ξγϕ(ξ)),thusanyρ(cid:48) (ϕ)isboundedbyafinitesumofseminormsρ (ϕ). (cid:4) α,β γ,δ 1 2 Contents Exercise1.1.2 Supposethatafunctionϕ liesinC∞(Rn\{0})andthatforallmultiindicesα thereexistconstantsL suchthatϕ satisfies α lim∂αϕ(t)=L . α t→0 Thenϕ liesinC∞(Rn)and∂αϕ(0)=L forallmultiindicesα. α Solution. By assumption we have that lim ϕ(t)=L , and thus setting ϕ(0)=L , we have a continuous extension of ϕ on Rn. t→0 0 0 Supposethatforall|α|≤N wehaveaCN extensionofϕ onRnforsomeN∈Z+.Wehave ∂αϕ(te )−∂αϕ(0) ∂αϕ(te )−L ∂ ∂αϕ(0)=lim j =lim j α =lim∂ ∂αϕ(ce ) j j t j t→0 t t→0 t t→0 bythemeanvaluetheorem,wherec ∈(−t,t)\{0}.Theapplicationofthemeanvaluetheoremisallowedsincethefunction t s(cid:55)→∂αϕ(se ) is continuous on the closed interval [−t,t] and differentiable on the open interval (−t,t). By assumption the j precedinglimitexistsandisequaltoL .Thisisvalidforall j=1,...,nandthusϕ hasaCN+1extensiononRn. (cid:4) α+ej Exercise1.1.3 Letthatu ∈S(cid:48)(Rn).Supposethatu →uinS(cid:48)/P andu →vinS(cid:48).Thenprovethatu−visapolynomial. N N N (cid:2) (cid:3) Hint:UseProposition1.1.3ordirectlyProposition2.4.1in[161]. Solution. GivenaϕinS (Rn)wehave(cid:104)u ,ϕ(cid:105)→(cid:104)u,ϕ(cid:105)and(cid:104)u ,ϕ(cid:105)→(cid:104)v,ϕ(cid:105)byassumption.Then(cid:104)u−v,ϕ(cid:105)=0forallϕinS (Rn). 0 N N 0 PassingtotheFouriertransform,itfollowsthat(cid:104)u(cid:100)−v,ψ(cid:105)=0forallfunctionsψ with∂αψ(0)=0forallα.Inparticular,this holds for all Schwartz functions that are supported in Rn\{0}. Then the distribution u(cid:100)−v is supported at the origin and it followsthatithastobealinearcombinationofderivativesofDiracmasses(Proposition2.4.1in[161]).Thenu−vmustbea polynomial. (cid:4) Exercise1.1.4 Suppose thatΨ is a Schwartz function whose Fourier transform is supported in an annulus that does not contain the origin andsatisfies∑j∈ZΨ(cid:98)(2−jξ)=1forallξ (cid:54)=0.Showthatforfunctionsg∈L1(Rn)withg(cid:98)∈L1(Rn)wehave∑j∈Z∆Ψj (g)=g pointwiseeverywhere. Solution. Wewriteforeveryx∈Rn (cid:90) (cid:90) (cid:90) g(x)= g(cid:98)(ξ)e2πix·ξdξ = g(cid:98)(ξ)e2πix·ξ ∑Ψ(cid:98)(2−jξ)dξ = ∑ g(cid:98)(ξ)e2πix·ξΨ(cid:98)(2−jξ)dξ Rn Rn j∈Z j∈Z Rn wherethelaststepisjustifiedbytheLebesguedominatedconvergencetheoremsincegisintegrable.Butthelastexpressionis (cid:98) equalto∑ ∆Ψ(g),hencetheconclusionfollows. j∈Z j Contents 3 Exercise1.1.5 LetΘ andΦ beSchwartzfunctionswhoseFouriertransformsarecompactlysupportedandletΨ,Ω beaSchwartzfunctions whoseFouriertransformsaresupportedinannulithatdonotcontaintheoriginandsatisfy ∞ Φ(cid:98)(ξ)Θ(cid:98)(ξ)+∑Ψ(cid:98)(2−jξ)Ω(cid:98)(2−jξ)=1 j=1 forallξ ∈Rn.Thenforevery f ∈S(cid:48)(Rn)wehave ∞ Φ∗Θ∗f+∑∆Ψ∆Ω(f)= f j j j=1 wheretheseriesconvergesinS(cid:48)(Rn). (cid:4) Solution. ItsufficestoshowthattheconvergenceholdsinS.Sowefixϕ inS.Weneedtoprovethat N sup (cid:12)(cid:12)∂ξβ(cid:2)(cid:8)1−Φ(cid:98)(ξ)Θ(cid:98)(ξ)−∑Ψ(cid:98)(2−jξ)Ω(cid:98)(2−jξ)(cid:9)ϕ(cid:98)(ξ)ξα(cid:3)(cid:12)(cid:12)→0 ξ∈Rn j=1 Thefunctioninsidethesquarebracketissupportedinasetoftheform|ξ|≥c2N forsomeconstantc.Moreover,thefunction inside the curly brackets is bounded and all of its derivatives are bounded. But for any γ ≤β, ∂γ(ϕ(cid:98)(ξ)ξα) is a Schwartz functionandthusithasrapiddecayatinfinity.Itfollowsthattheprecedingsupremumovertheset|ξ|≥c2N tendstozeroas N→∞byLeibniz’srule. (cid:4) Exercise1.1.6 (a)Showthatforanymultiindexα onRnthereisapolynomialQ ofnvariablesofdegree|α|suchthatforallξ ∈Rnwehave α ∂α(e−|ξ|2)=Q (ξ)e−|ξ|2. α (b)Showthatforallmultiindices|α|≥1andforeachkin{0,1,...,|α|−1}thereisapolynomialP ofnvariablesofdegree α,k atmost|α|suchthat |α|−1 1 (cid:18)ξ ξ (cid:19) ∂α(e−|ξ|)= ∑ P 1,..., n e−|ξ| |ξ|k α,k |ξ| |ξ| k=0 foreveryξ ∈Rn\{0}.Concludethatfor|α|≥1wehave (cid:18) (cid:19) (cid:12)(cid:12)∂α(e−|ξ|)(cid:12)(cid:12)≤Cα 1+|ξ1|+···+|ξ||1α|−1 e−|ξ| forsomeconstantC andallξ (cid:54)=0. α (cid:2) Hint:Forthetwoidentitiesuseinductionon|α|.Part(b):usethatthe∂ derivativeofahomogeneouspolynomialofdegreeat j most|α|isanotherhomogeneouspolynomialofdegreeatmost|α|+1times|ξ|−1.(cid:3) Solution. Toprove ∂α(e−|ξ|2)=Q (ξ)e−|ξ|2 α startwiththecaseα =0whichisobviouslyvalid.Ifitisalsovalidforacertainα,lete =(0,...,0,1,0,...,0)andconsider j α+e .Wehave j 4 Contents ∂ ∂α(e−|ξ|2)=(cid:2)(∂ Q )(ξ)−2ξ Q (ξ)(cid:3)e−|ξ|2 j j α j α andnotethattheexpressioninthesquarebracketisapolynomialofdegree|α|+1. Nextweprovethat |α|−1 1 (cid:18)ξ ξ (cid:19) ∂α(e−|ξ|)= ∑ P 1,..., n e−|ξ|, |ξ|k α,k |ξ| |ξ| k=0 where the polynomials P have degree at most |α|. This identity is certainly valid for any multiindex α with |α|=1 by a α,k simplecalculation.Assumingthatitholdsforagivenα,thendifferentiatein∂ .Wefirstnoticethatforanymonomialwehave j ξβ 1 (cid:20) ξβ−ej ξβ+ej (cid:21) ∂ = β −|β| j|ξ||β| |ξ| j|ξ||β|−1 |ξ||β|+1 ifβ isamultiindex,thus (cid:18) (cid:19) (cid:18) (cid:19) ξ ξ 1 ξ ξ ∂ P 1,..., n = P(cid:93) 1,..., n j α,k |ξ| |ξ| |ξ| α,k |ξ| |ξ| whereP(cid:93) ispolynomialofdegreeatmost|α|+1. α,k Theinductionhypothesisgives ∂ ∂α(e−|ξ|) j (cid:20)|α|−1 1 (cid:18)ξ ξ (cid:19) (cid:21) =∂ ∑ P 1,..., n e−|ξ| j |ξ|k α,k |ξ| |ξ| k=0 =|α∑|−1(cid:20)− k ξj P (cid:18)ξ1,..., ξn(cid:19)+ 1 1 P(cid:93) (cid:18)ξ1,..., ξn(cid:19)− ξj 1 P (cid:18)ξ1,..., ξn(cid:19)(cid:21)e−|ξ| |ξ|k+1|ξ| α,k |ξ| |ξ| |ξ|k |ξ| α,k |ξ| |ξ| |ξ||ξ|k α,k |ξ| |ξ| k=0 =|α∑|−1 1 (cid:20)− ξj kP (cid:18)ξ1,..., ξn(cid:19)+P(cid:93) (cid:18)ξ1,..., ξn(cid:19)(cid:21)e−|ξ|−|α∑|−1 1 ξj P (cid:18)ξ1,..., ξn(cid:19)e−|ξ| |ξ|k+1 |ξ| α,k |ξ| |ξ| α,k |ξ| |ξ| |ξ|k |ξ| α,k |ξ| |ξ| k=0 k=0 = ∑|α| 1 (cid:20)− ξj ((cid:96)−1)P (cid:18)ξ1,..., ξn(cid:19)+P(cid:93) (cid:18)ξ1,..., ξn(cid:19)(cid:21)e−|ξ|−|α∑|−1 1 (cid:20)ξj P (cid:18)ξ1,..., ξn(cid:19)(cid:21)e−|ξ| |ξ|(cid:96) |ξ| α,(cid:96)−1 |ξ| |ξ| α,(cid:96)−1 |ξ| |ξ| |ξ|k |ξ| α,k |ξ| |ξ| (cid:96)=1 k=0 |α|+1−1 1 (cid:18)ξ ξ (cid:19) = ∑ P 1,..., n e−|ξ|. |ξ|m α+ej,m |ξ| |ξ| m=0 Weexaminethedegreesofthepolynomialsinsidethesquarebrackets.Theyallhavedegreeatmost|α|+1.ThusP α+ej,m hasdegreeatmost|α|+1=|α+e |. j ThelastassertionfollowsfromtheboundednessofP ontheunitsphere. (cid:4) α,k

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.